| 12345678910111213141516 |
- import random
- import spacy
- TRAIN_DATA = [
- ("Uber blew through $1 million a week", {'entities': [(0, 4, 'ORG')]}),
- ("Google rebrands its business apps", {'entities': [(0, 6, "ORG")]})]
- nlp = spacy.blank('fr')
- optimizer = nlp.begin_training()
- for i in range(20):
- random.shuffle(TRAIN_DATA)
- for text, annotations in TRAIN_DATA:
- nlp.update([text], [annotations], sgd=optimizer)
- nlp.to_disk('/model')
|