| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177 |
- '''
- >> https://www.codingame.com/ide/173171838252e7c6fd6f3ff9cb8169431a08eec1
- @author: olivier.massot, may 2019
- '''
- import heapq
- import sys
- import time
- # TODO
- # * priorize attack on neighbors of pivots (allies'pivots to colonize and ennemies to threat)
- # * !!! moves: check before if unit is not on a zone which needs to be protected
- # x optimize moves, especially at start! (by introducing dispersion?)
- # * take units and towers in account when computing the threat
- # x priorize colonization of cells near HQ
- # ? when priority needs a lvl3 unit, find a way to spare
- # * resurrect the strategic value: number of cells depending of the cell
- # * consider defending also cells not owned
- # x limit the training of level 3 when it's really needed
- # * make a first turn of moves for units deep inside the territory, to avoid unecessary training and computing
- debug = True
- t0 = time.time()
- def log(*msg):
- if debug:
- print("{} - ".format(str(time.time() - t0)[1:5]), *msg, file=sys.stderr)
- # OWNER
- ME = 0
- OPPONENT = 1
- # BUILDING TYPE
- HQ = 0
-
- class Base():
- def __repr__(self):
- return f"<{self.__class__.__name__}: {self.__dict__}>"
- class Queue(Base):
- def __init__(self):
- self.items = []
-
- def __bool__(self):
- return bool(self.items)
- def __repr__(self):
- return str(self.items)
- def values(self):
- return (v for _, v in self.items)
- def put(self, item, priority):
- heapq.heappush(self.items, (priority, item))
- def fput(self, item, priority):
- while priority in [p for p, _ in self.items]:
- priority += 1
- self.put(item, priority)
- def get(self):
- return heapq.heappop(self.items)[1]
- class InterestQueue(Queue):
- def __add__(self, other):
- self.items += other.items
- return self
-
- def put(self, item):
- heapq.heappush(self.items, item)
-
- def get(self):
- return heapq.heappop(self.items)
- class BasePosition(Base):
- def __init__(self, cell, *args, **kwargs):
- self.interest = 0
- self.cell = cell
-
- @property
- def x(self):
- return self.cell.x
-
- @property
- def y(self):
- return self.cell.y
-
- @property
- def pos(self):
- return self.cell.pos
-
- def __lt__(self, other):
- return self.interest < other.interest
- def eval(self):
- raise NotImplementedError
-
-
- class Position(BasePosition):
- def __init__(self, cell):
- super().__init__(cell)
-
- self.possession = 0
- self.threat = 0
- self.pivot = 0
- self.union = 0
- self.depth = 0
- self.hq = 0
- self.tower = 0
- self.mine = 0
- self.dist_to_goal = 0
-
- self.min_level = 1
-
- def pre_eval(self):
-
- # *** Eval interest: the lower the better
-
- self.interest = 0
- self.min_level = 1
-
- # eval possession
- if self.cell.active_owned:
- self.possession = 1
-
- elif self.cell.active_opponent:
- self.possession = -1
- # eval threat
- self.threat = 0
- if self.cell.active_owned:
- self.threat = self.cell.threat
- self.covers = sum([grid[n].owned for n in self.cell.neighbors])
-
- # eval pivot
- self.pivot = sum([1 + grid[p].get_unit_level() for p in self.cell.pivot_for])
- # distance to the ennemy HQ
- self.dist_to_goal = Grid.manhattan(self.cell.pos, opponent.hq.pos)
-
- # distance to the own HQ
- self.dist_to_hq = Grid.manhattan(self.cell.pos, player.hq.pos)
-
- # priorize adjacent cells
- self.union = len([n for n in self.cell.neighbors if grid[n].active_owned])
-
- # favorize dispersion
- self.concentration = len([n for n in self.cell.neighbors if grid[n].unit and grid[n].unit.owned])
-
- self.deadends = len([n for n in self.cell.neighbors if not grid[n].movable])
-
- # include 'depthmap'
- self.depth = self.cell.depth
-
- self.under_tower = self.cell.under_tower
- self.overlaps_tower = sum([grid[n].under_tower for n in self.cell.neighbors])
-
- # priorize mines or HQ
- if self.cell.building:
- self.hq = int(self.cell.building.type_ == Building.HQ)
- self.tower = int(self.cell.building.type_ == Building.TOWER)
- self.mine = int(self.cell.building.type_ == Building.MINE)
-
- # *** Min level to go there
- if self.cell.unit and self.cell.unit.opponents:
- self.min_level = min([self.cell.unit.level + 1, 3])
- if self.cell.under_tower:
- self.min_level = 3
- def eval(self):
- self.pre_eval()
- self.interest = 3 * self.depth + self.dist_to_goal + 2 * self.concentration + 2 * self.deadends
- def __repr__(self):
- detail = [self.possession, self.threat, self.pivot, self.dist_to_goal,
- self.union, self.concentration, self.depth, self.hq, self.tower, self.mine]
- return "<{} {}: {}, {} ({})>".format(self.__class__.__name__, self.pos, self.interest, self.min_level, detail)
-
-
- class Defend(Position):
- def __init__(self, cell, emergency = False):
- super().__init__(cell)
- self.emergency = emergency
-
- def __repr__(self):
- detail = [self.threat, self.covers, self.pivot, self.emergency,
- self.dist_to_hq, self.cell.danger, self.cell.critical,
- self.under_tower, self.overlaps_tower]
- return "<{} {}: {}, {} ({})>".format(self.__class__.__name__, self.pos, self.interest, self.min_level, detail)
-
- def eval(self):
- self.pre_eval()
- self.interest = (200 if not self.emergency else 50) \
- - 2 * self.threat \
- - 2 * self.covers \
- - 8 * self.pivot \
- - 80 * self.cell.critical \
- - 25 * self.cell.danger \
- + 25 * self.cell.under_tower \
- + 10 * self.overlaps_tower
-
- class Attack(Position):
- def eval(self):
- self.pre_eval()
- self.interest = 15 * self.possession \
- - 5 * self.pivot \
- - 2 * self.union \
- + 3 * self.concentration \
- + 2 * self.deadends \
- + 4 * self.depth \
- + self.dist_to_goal \
- - 2 * max([0, 11 - self.dist_to_hq]) \
- - 30 * self.tower \
- - 15 * self.mine \
- - 100 * self.hq \
- + 10 * (self.min_level - 1)
-
- class MinePosition(BasePosition):
- def __init__(self, target):
- super().__init__(target)
-
- def eval(self):
- # the lower the better
- self.interest -= self.cell.depth
- class BaseLoc(Base):
- def __init__(self, x, y):
- self.x = x
- self.y = y
-
- @property
- def pos(self):
- return self.x, self.y
- class MineSite(BaseLoc):
- def __init__(self, x, y):
- super().__init__(x, y)
- class BaseOwnedLoc(BaseLoc):
- def __init__(self, x, y, owner):
- super().__init__(x, y)
- self.owner = owner
- @property
- def owned(self):
- return self.owner == ME
- @property
- def opponents(self):
- return self.owner == OPPONENT
- class Building(BaseOwnedLoc):
- HQ = 0
- MINE = 1
- TOWER = 2
-
- cost = {0: 0, 1: 20, 2: 15}
- maintenance = {0: 0, 1: 0, 2: 0}
-
- def __init__(self, owner, type_, x, y):
- super().__init__(x, y, owner)
- self.type_ = type_
- @property
- def hq(self):
- return self.type_ == Building.HQ
- class Unit(BaseOwnedLoc):
- cost = {1: 10, 2: 20, 3: 30}
- maintenance = {1: 1, 2: 4, 3: 20}
- def __init__(self, owner, id_, level, x, y):
- super().__init__(x, y, owner)
- self.id_ = id_
- self.level = level
-
- self.has_moved = False
- class Player(Base):
- def __init__(self, id_):
- self.id_ = id_
- self.gold = 0
- self.income = 0
- self.units = []
- self.buildings = []
- self.hq = None
-
- self.spent = 0
- self.new_charges = 0
- def update(self, gold, income, units, buildings):
- self.gold = gold
- self.income = income
- self.units = [u for u in units if u.owner == self.id_]
- self.buildings = [b for b in buildings if b.owner == self.id_]
- self.hq = next((b for b in self.buildings if b.type_ == HQ))
- self.spent = 0
- self.new_charges = 0
- @property
- def current_gold(self):
- return self.gold - self.spent
- @property
- def current_income(self):
- return self.income - self.new_charges
- def training_capacity(self):
- return min([(self.gold - self.spent) // Unit.cost[1], (self.income - self.new_charges) // Unit.maintenance[1]])
- def can_afford(self, lvl):
- return (self.gold - self.spent) >= Unit.cost[lvl] and (self.income - self.new_charges) >= Unit.maintenance[lvl]
- def max_affordable(self):
- for lvl in range(3, 0, -1):
- if self.can_afford(lvl):
- return lvl
- return 0
- def can_act(self):
- return self.training_capacity() > 0 or self.gold >= 15 or any(not unit.has_moved for unit in self.units)
- class Cell(Base):
- def __init__(self, x, y):
- self.x = x
- self.y = y
- self._content = "#"
- self.neighbors = []
- self.unit = None
- self.building = None
- self.mine_site = None
-
- self.under_tower = False
- self.depth = 0
- self.pivot_for = []
- self.critical = False
- self.danger = False
- self.threat = 0
- self.threat_by = None
-
- @property
- def pos(self):
- return self.x, self.y
-
- @property
- def raw_val(self):
- return self._content
- def update(self, content, unit = None, building = None):
- self._content = content
- self.unit = unit
- self.building = building
-
- self.under_tower = False
- self.depth = 0
- self.pivot_for = []
- self.threat = 0
- self.threat_by = None
- self.critical = False
- self.danger = False
- @property
- def movable(self):
- return self._content != "#"
-
- @property
- def owned(self):
- return self._content.lower() == "o"
-
- @property
- def opponents(self):
- return self._content.lower() == "x"
-
- @property
- def owner(self):
- if self.owned:
- return ME
- elif self.opponents:
- return OPPONENT
- else:
- return None
-
- @property
- def headquarter(self):
- return self.pos in Grid.hqs
-
- @property
- def occupied(self):
- return self.unit or self.building
-
- @property
- def active(self):
- return self._content.isupper()
-
- @property
- def active_owned(self):
- return self._content == "O"
-
- @property
- def active_opponent(self):
- return self._content == "X"
-
- def is_active_owner(self, player_id):
- if player_id == ME:
- return self.active_owned
- elif player_id == ME:
- return self.active_opponent
- else:
- return False
-
- def owned_unit(self):
- if self.unit and self.unit.owned:
- return self.unit
-
- def owned_building(self):
- if self.building and self.building.owned:
- return self.building
-
- def take_possession(self):
- self._content = "O"
-
- def desactivate(self):
- self._content = self._content.lower()
-
- def get_unit_level(self):
- return self.unit.level if self.unit else 0
-
- class Node(Base):
- def __init__(self, pos, path=[]):
- self.pos = pos
- self.path = path
-
- class PathNode(tuple):
- def __new__(self, x, y, parent=None):
- n = tuple.__new__(self, (x, y))
- n.parent = parent
- n.cost = 0
- return n
-
- def __repr__(self):
- return f"<{self[0]}, {self[1]}, c:{self.cost}>"
-
- class Grid(Base):
- dim = 12
- hqs = [(0,0), (11,11)]
-
- def __init__(self, mines_sites = []):
-
- self.cells = {(x, y): Cell(x, y) for x in range(Grid.dim) for y in range(Grid.dim)}
- for pos, cell in self.cells.items():
- cell.neighbors = [p for p in self.neighbors(*pos) if p in self.cells]
-
- self.units = []
- self.buildings = []
- for m in mines_sites:
- self.cells[(m.x, m.y)].mine_site = m
- self.threat_level = 0
-
- def print_grid(self):
- return "\n".join(["".join([c for c in row]) for row in self.grid])
-
- @property
- def pos(self):
- return self.x, self.y
-
- @property
- def grid(self):
- return [[self.cells[(x, y)].raw_val for x in range(Grid.dim)] for y in range(Grid.dim)]
- def __getitem__(self, key):
- return self.cells[key]
- def update(self, grid, buildings, units):
- buildings_ix = {(b.x, b.y): b for b in buildings}
- units_ix= {(u.x, u.y): u for u in units}
-
- self.buildings = list(buildings)
- self.units = list(units)
-
- for y, row in enumerate(grid):
- for x, c in enumerate(row):
- self.cells[(x, y)].update(c,
- units_ix.get((x, y), None),
- buildings_ix.get((x, y), None))
- log(" * update pivots")
- self.update_pivots()
-
- log(" * update threats")
- self.update_threats()
-
- self.update_state()
- def update_state(self):
- self.update_tower_areas()
- self.update_frontlines()
- self.update_depth_map()
- @staticmethod
- def manhattan(from_, to_):
- xa, ya = from_
- xb, yb = to_
- return abs(xa - xb) + abs(ya - yb)
- def neighbors(self, x, y, diags=False):
- neighs = [(x, y - 1), (x - 1, y), (x + 1, y), (x, y + 1)]
- if diags:
- neighs += [(x - 1, y - 1), (x + 1, y - 1), (x - 1, y + 1), (x + 1, y + 1)]
- return [(x, y) for x, y in neighs if 0 <= x < Grid.dim and 0 <= y < Grid.dim]
-
- @classmethod
- def zone(cls, center, radius):
- return [(x, y) for x in range(0, cls.dim) for y in range(0, cls.dim) if cls.manhattan(center, (x, y)) <= radius]
-
- def zone_set(self, center, radius):
- zone = set(center)
- for _ in range(radius):
- for p in zone:
- zone |= self.neighbors(*p)
- @staticmethod
- def closest(from_, in_):
- return min(in_, key=lambda x: Grid.manhattan(from_, x))
-
- def get_hq(self, player_id):
- return next((b for b in self.buildings if b.owner == player_id and b.hq))
-
- def update_tower_areas(self):
- for b in self.buildings:
- if b.type_ == Building.TOWER:
- self.cells[b.pos].under_tower = True
- for n in self.cells[b.pos].neighbors:
- self.cells[n].under_tower = True
-
- def update_frontlines(self):
- # update the current frontlines
- self.frontline = []
- self.frontex = []
-
- for cell in self.cells.values():
- if cell.active_owned:
- if any(self.cells[c].movable and not self.cells[c].active_owned
- for c in cell.neighbors):
- self.frontline.append(cell)
- def update_depth_map(self):
- buffer = [c.pos for c in self.frontline]
- for p in buffer:
- self.cells[p].depth = 1
-
- next_buffer = []
- while buffer:
- for p in buffer:
- for n in self.cells[p].neighbors:
- if self.cells[n].active_owned and not self.cells[n].depth:
- self.cells[n].depth = self.cells[p].depth + 1
- next_buffer.append(n)
-
- buffer = list(next_buffer)
- next_buffer = []
-
- def _active_owned(self, pos, player_id):
- return self.cells[pos].is_active_owner(player_id)
-
- def update_pivot_for(self, player_id):
- start = self.get_hq(player_id).pos
- start_node = Node(start)
-
- buffer = [start_node]
- nodes = {start_node}
-
- its, breakdown = 0, 1200
-
- ignored = [p for p, c in self.cells.items() if c.is_active_owner(player_id) and
- len([n for n in self.neighbors(*p, diags=True) if self._active_owned(n, player_id)]) == 8]
-
- while buffer:
- new_buffer = []
- for node in buffer:
- its += 1
- if its > breakdown:
- log("pivots: broken")
- return
- if node.pos in ignored:
- continue
- for n in self.neighbors(*node.pos):
- if not n in node.path and self._active_owned(n, player_id):
- new_node = Node(n, node.path + [node.pos])
- nodes.add(new_node)
- new_buffer.append(new_node)
- buffer = new_buffer
-
- paths_to = {}
- for node in nodes:
- if not node.pos in paths_to:
- paths_to[node.pos] = []
- paths_to[node.pos].append(node.path)
-
- pivots = {}
- for candidate in paths_to:
- if candidate == start:
- continue
- for p, paths in paths_to.items():
- if not paths or not paths[0] or p in ignored:
- continue
- if all(candidate in path for path in paths):
- if not candidate in pivots:
- pivots[candidate] = []
- pivots[candidate].append(p)
-
- log("player {} pivots: {}".format(player_id, {k: len(v) for k, v in pivots.items()}))
-
- for pivot, pivot_for in pivots.items():
- self.cells[pivot].pivot_for = pivot_for
-
- def update_pivots(self):
- self.update_pivot_for(ME)
- self.update_pivot_for(OPPONENT)
-
- def update_threats(self):
- # 1 + max number of units opponents can produce in one turn
- self.threat_level = 2 + (opponent.gold + opponent.income) // Unit.cost[1]
-
- ennemy_frontier = [c for c in self.cells.values() if c.active_opponent \
- and any(self.cells[n].movable and not self.cells[n].opponents for n in c.neighbors)]
- for cell in self.cells.values():
- if cell.owned:
- closest, dist = min([(o, Grid.manhattan(cell.pos, o.pos)) for o in ennemy_frontier], key=lambda x: x[1])
- if cell.unit:
- dist += cell.unit.level
- if cell.under_tower:
- dist += 2
-
- if dist < self.threat_level:
- cell.threat = self.threat_level - dist
- cell.threat_by = closest
-
- hqcell = grid[player.hq.pos]
- self.emergency = hqcell.threat > 0
-
- self.update_threat_path()
-
- # log({c.pos: (c.threat, c.threat_by) for c in self.cells.values() if c.owned and c.threat > 0})
-
- def update_threat_path(self):
-
- hqcell = grid[player.hq.pos]
- if not hqcell.threat > 0:
- return
- closest_threat = hqcell.threat_by
- # log(f"* {closest_threat.pos} threats HQ")
-
- path = self.path(closest_threat.pos, player.hq.pos)
- if path:
- # log(f"* Path to HQ: {path}")
- extended_path = set()
- for p in path:
- extended_path |= set(self.neighbors(*p))
- extended_path -= set(path)
-
- for p in path:
- if self._active_owned(p, ME):
- self.cells[p].critical = True
- for p in extended_path:
- if self._active_owned(p, ME):
- self.cells[p].danger = True
-
-
- def path(self, start, target):
- nodes = Queue()
- its, break_on = 0, 2000
-
- origin = PathNode(*start)
- nodes.put(origin, 0)
-
- neighbors = []
- while nodes:
- current = nodes.get()
-
- if current == target:
- path = []
- previous = current
- while previous:
- if previous != start:
- path.insert(0, previous)
- previous = previous.parent
- return path
- neighbors = self.neighbors(*current)
- for x, y in neighbors:
- its += 1
- if its > break_on:
- log("<!> pathfinding broken")
- return None
-
- if (x, y) == current.parent:
- continue
-
- cell = self.cells[(x, y)]
- if not cell.movable:
- continue
- moving_cost = 1
- if cell.unit and cell.unit.owned:
- moving_cost += cell.unit.level
- if cell.under_tower:
- moving_cost += 2
-
- cost = current.cost + moving_cost
- priority = cost + 10 * Grid.manhattan((x, y), target)
-
- node = PathNode(x, y, current)
- node.cost = cost
- nodes.put(node, priority)
-
- return None
-
- def influence_zone(self, player_id):
- owned, neighbors = {p for p, c in self.cells.items() if c.owner == player_id and c.active}, set()
- for p in owned:
- neighbors |= set(self.neighbors(*p))
- return (self.cells[p] for p in (owned | neighbors) if self.cells[p].movable)
-
- def training_places(self):
- return (c for c in self.influence_zone(ME) if self.can_move(c.pos))
-
- def get_next_training(self, max_level=3):
- q = InterestQueue()
- for cell in self.training_places():
- q.put(Position(cell))
- if not q:
- return None
-
- action = q.get()
-
- if max_level < 3:
- while action.cell.under_tower:
- try:
- action = q.get()
- except IndexError:
- return None
- level = 1
- for ennemy in opponent.units:
- if Grid.manhattan(action.cell.pos, ennemy.pos) < 3:
- level = min(ennemy.level + 1, max_level)
- break
-
- action.level = level
- return action
-
- def can_move(self, pos, level=1):
- cell = self.cells[pos]
- can_move = True
-
- can_move &= cell.movable
- can_move &= not cell.owned_unit()
- can_move &= not cell.owned_building()
- if level != 3:
- can_move &= (cell.unit is None or cell.unit.level < level)
- can_move &= cell.owned or not cell.under_tower
- return can_move
-
- def moving_zone(self, unit):
- return (self.cells[p] for p in self.cells[unit.pos].neighbors
- if self.can_move(p, unit.level))
-
- def get_next_move(self, unit):
- q = InterestQueue()
- for cell in self.moving_zone(unit):
- o = Position(cell)
- o.eval()
- q.put(o)
- if not q:
- return None
- objective = q.get()
- return objective
-
- def building_zone(self, type_):
- if type_ == Building.MINE:
- return [cell for cell in self.cells.values() if cell.mine_site and cell.depth > 3]
- else:
- return []
- def get_building_site(self, type_):
- q = InterestQueue()
- for cell in self.building_zone(type_):
- q.put(MinePosition(cell))
- if not q:
- return None
- return q.get()
- def remove_unit_from(self, cell):
- opponent.units.remove(cell.unit)
- self.units.remove(cell.unit)
- cell.unit = None
- def cost_for_new_mine(self):
- return Building.cost[Building.MINE] + 4 * len([b for b in player.buildings if b.type_ == Building.MINE])
- def apply(self, action):
- if type(action) is Move:
- old_cell, new_cell = self.cells[action.unit.pos], action.cell
-
- if new_cell.unit:
- if new_cell.unit.owned:
- log("ERROR: impossible move (owned unit here)")
- return
- if action.unit.level < 3 and new_cell.unit.level >= action.unit.level:
- log("ERROR: impossible move (unit here, level too low)")
- return
- # cell is occupied by an opponent's unit with an inferior level
- self.remove_unit_from(new_cell)
-
- if new_cell.building and new_cell.building.type_ == Building.TOWER:
- if new_cell.owned:
- log("ERROR: impossible move (allied tower here)")
- if action.unit.level < 3:
- log("ERROR: impossible move (tower here, level too low)")
- opponent.buildings.remove(new_cell.building)
- self.buildings.remove(new_cell.building)
- new_cell.building = None
-
- old_cell.unit = None
- action.unit.x, action.unit.y = new_cell.pos
- new_cell.unit = action.unit
- action.unit.has_moved = True
-
- if not new_cell.owned:
- if new_cell.opponents:
- for p in new_cell.pivot_for:
- self.cells[p].desactivate()
- if self.cells[p].unit and self.cells[p].unit.opponents:
- self.remove_unit_from(self.cells[p])
- new_cell.take_possession()
-
- self.update_state()
-
- elif type(action) is Train:
- new_cell = action.cell
- unit = Unit(ME, None, action.level, *new_cell.pos)
- unit.has_moved = True
-
- player.spent += Unit.cost[action.level]
- player.new_charges += Unit.maintenance[action.level]
-
- if new_cell.unit:
- if new_cell.unit.owned:
- log("ERROR: impossible training")
- return
- if unit.level < 3 and new_cell.unit.level >= unit.level:
- log("ERROR: impossible training")
- return
- # cell is occupied by an opponent's unit with an inferior level
- self.remove_unit_from(new_cell)
-
- if new_cell.building and new_cell.building.opponents and new_cell.building.type_ == Building.TOWER:
- if unit.level < 3:
- log("ERROR: impossible training")
- opponent.buildings.remove(new_cell.building)
- self.buildings.remove(new_cell.building)
- new_cell.building = None
-
- new_cell.unit = unit
-
- if not new_cell.owned:
- if new_cell.opponents:
- for p in new_cell.pivot_for:
- self.cells[p].desactivate()
- if self.cells[p].unit and self.cells[p].unit.opponents:
- self.remove_unit_from(self.cells[p])
- new_cell.take_possession()
-
- self.update_state()
-
- elif type(action) is BuildTower:
- new_cell = action.cell
- building = Building(ME, Building.TOWER, *new_cell.pos)
- new_cell.building = building
- player.buildings.append(building)
-
- player.spent += Building.cost[Building.TOWER]
-
- if building.type_ == Building.TOWER:
- new_cell.under_tower = True
- for n in new_cell.neighbors:
- self.cells[n].under_tower = True
- self.update_state()
- if self.emergency:
- self.update_threat_path()
- elif type(action) is BuildMine:
-
- player.spent += self.cost_for_new_mine()
-
- new_cell = action.cell
- building = Building(ME, Building.MINE, *new_cell.pos)
- new_cell.building = building
- player.buildings.append(building)
- class Action(Base):
- def command(self):
- raise NotImplementedError()
-
- class Wait(Action):
- def command(self):
- return "WAIT"
- class Move(Action):
- def __init__(self, unit, cell):
- self.unit = unit
- self.cell = cell
- def __repr__(self):
- return f"<{self.__class__.__name__}: {self.unit.id_} {self.cell.pos}>"
- def command(self):
- return f"MOVE {self.unit.id_} {self.cell.x} {self.cell.y}"
-
- class Train(Action):
- def __init__(self, level, cell):
- self.level = level
- self.cell = cell
- def __repr__(self):
- return f"<{self.__class__.__name__}: {self.level} {self.cell.pos}>"
-
- def command(self):
- return f"TRAIN {self.level} {self.cell.x} {self.cell.y}"
- class Build(Action):
- str_types = {1: "MINE", 2: "TOWER"}
- def __init__(self, type_, cell):
- self.type_ = type_
- self.cell = cell
- def __repr__(self):
- return f"<{self.__class__.__name__}: {self.str_types[self.type_]} {self.cell.pos}>"
-
- def command(self):
- return f"BUILD {self.str_types[self.type_]} {self.cell.x} {self.cell.y}"
- class BuildTower(Build):
- def __init__(self, cell):
- super().__init__(Building.TOWER, cell)
- class BuildMine(Build):
- def __init__(self, cell):
- super().__init__(Building.MINE, cell)
-
-
- # ******** MAIN *************
- test = False
- if test:
- mines_input = []
- else:
- mines_input = [input() for _ in range(int(input()))]
- mines_sites = [MineSite(*[int(j) for j in item.split()]) for item in mines_input]
- # log(f"* mines: {mines_sites}")
- grid = Grid(mines_sites)
- player = Player(ME)
- opponent = Player(OPPONENT)
- def cmd_wait():
- return "WAIT"
- def get_input():
- if test:
- gold, income = 20, 1
- opponent_gold, opponent_income = 20, 1
- new_grid_input = ['O..#########', '...###...###', '...###....##', '#..##.....##', '...#......##', '#.........##', '##.........#', '##......#...', '##.....##..#', '##....###...', '###...###...', '#########..X']
- buildings_input = ['0 0 0 0', '1 0 11 11']
- units_input = []
-
- else:
- gold, income = int(input()), int(input())
- opponent_gold, opponent_income = int(input()), int(input())
- new_grid_input = [input() for _ in range(12)]
- buildings_input = [input() for _ in range(int(input()))]
- units_input = [input() for _ in range(int(input()))]
-
- # log(gold, income, opponent_gold, opponent_income)
- # log(new_grid_input)
- # log(buildings_input)
- # log(units_input)
-
- return gold, income, opponent_gold, opponent_income, new_grid_input, buildings_input, units_input
- while True:
-
-
- # <--- get and parse input
- gold, income, opponent_gold, opponent_income, new_grid_input, buildings_input, units_input = get_input()
- new_grid = [list(row) for row in new_grid_input]
-
- buildings = [Building(*[int(j) for j in item.split()]) for item in buildings_input]
- # log(f"* buildings: {buildings}")
-
- units = [Unit(*[int(j) for j in item.split()]) for item in units_input]
- # log(f"* units: {units}")
- # --->
-
- log("## Start ##")
- log("* Update")
-
- # <--- update
- player.update(gold, income, units, buildings)
- # log(f"player: {player}")
-
- opponent.update(opponent_gold, opponent_income, units, buildings)
- # log(f"opponent: {opponent}")
-
- grid.update(new_grid, buildings, units)
- # log(f"grid:\n{grid.print_grid()}")
- # --->
-
- commands = []
-
- # start
- log(f"Threat level: {grid.threat_level}")
- if grid.emergency:
- log("<!> HQ is threaten!")
-
- todo = []
- abandonned = []
- acted = True
- defs, max_def = 0, 8
-
- while player.can_act():
-
- if acted:
- # only re-eval if an action occured
- q = InterestQueue()
- for cell in grid.influence_zone(ME):
- if cell.movable and not cell in abandonned:
- if cell.owned and cell.threat > 0 and cell.pos != player.hq.pos:
- if defs > max_def:
- continue
- p = Defend(cell, grid.emergency)
- elif not cell.owned:
- p = Attack(cell)
- else:
- continue
- p.eval()
- q.put(p)
-
- if not q:
- break
-
- acted = False
-
- objective = q.get()
-
- if type(objective) is Defend:
- defs += 1
-
- if player.current_gold > Building.cost[Building.TOWER] \
- and not objective.cell.mine_site \
- and not objective.cell.building:
- action = BuildTower(objective.cell)
-
- elif objective.cell.unit and objective.cell.unit.owned:
- # already a unit here: stay on place
- objective.cell.unit.has_moved = True
- continue
-
- elif player.can_afford(1):
- action = Train(1, objective.cell)
-
- else:
- near_unit = next((grid[n].unit for n in objective.cell.neighbors
- if grid[n].unit
- and grid[n].unit.owned
- and grid[n].unit.level == 1
- and not grid[n].unit.has_moved),
- None)
- if near_unit and grid.can_move(objective.cell.pos, near_unit.level):
- action = Move(near_unit, objective.cell)
- else:
- abandonned.append(objective.cell)
- continue
-
- elif type(objective) is Attack:
-
- near_units = [grid[n].unit for n in objective.cell.neighbors if grid[n].unit \
- and grid[n].unit.owned \
- and not grid[n].unit.has_moved \
- and grid[n].unit.level >= objective.min_level]
-
- if len(near_units) == 1:
- near_unit = near_units[0]
- elif len(near_units) > 1:
- near_unit = min(near_units, key=lambda u: len([u.pos == o.cell.pos for o in q.items]))
- else:
- near_unit = None
-
- if near_unit and grid.can_move(objective.cell.pos, near_unit.level):
- action = Move(near_unit, objective.cell)
- else:
- if objective.min_level > player.max_affordable():
- abandonned.append(objective.cell)
- continue
- action = Train(objective.min_level, objective.cell)
-
- log(f"priority: {objective}")
-
- # a unit occupy the cell
- already_there = action.cell.unit
- if already_there and already_there.owned:
- if already_there.has_moved:
- log("cell is occupied: abandon")
- abandonned.append(objective.cell)
- continue
- log(f"* needs to evacuate unit {already_there.id_} before")
- evacuate = grid.get_next_move(already_there)
- if evacuate:
- evac_action = Move(already_there, evacuate.cell)
- log(f"forced: {evac_action}")
- grid.apply(evac_action)
- todo.append(evac_action)
- else:
- log(f"<!> No move available for unit {already_there.id_}")
- abandonned.append(objective.cell)
- continue
-
- acted = True
- log(f"> Apply action {action}")
- grid.apply(action)
- todo.append(action)
-
- # units which did not move
- for unit in player.units:
- if not unit.has_moved:
- objective = grid.get_next_move(unit)
- if objective:
- action = Move(unit, objective.cell)
- log(f"default: {action}")
- grid.apply(action)
- todo.append(action)
- else:
- log(f"<!> No move available for unit {unit.id_}")
- unit.has_moved = True
-
- # can build mines?
- if player.current_gold > grid.cost_for_new_mine():
- site = grid.get_building_site(Building.MINE)
- if site:
- action = BuildMine(site.cell)
- if action:
- log(f"default: {action}")
- grid.apply(action)
- todo.append(action)
-
- log(f"* todo: {todo}")
-
- commands = [action.command() for action in todo]
- if not commands:
- log("nothing to do: wait")
- commands = ["WAIT"]
-
- log(f"* commands: {commands}")
- print(";".join(commands))
|