| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963 |
- '''
- @author: olivier.massot, 2019
- '''
- import heapq
- import sys
- # TODO:
- # * add an esquive manoeuvre / try to avoid cannonballs
- # * consider firing at rum barrels if an ennemy is nearer
- # * compute first and second target instead of only one to anticipate the next move
- # * if an enemy is near a mine, shoot the mine instead of the ship
- # * compute the probabilities of presence of an ennemy on different coords at next turn
- # * find a way to change direction without slowing down if possible
- # * avoid getting blocked by a side-by-side with an ennemy
- debug = True
- def log(*msg):
- if debug:
- print(*msg, file=sys.stderr)
- current_turn = 0
- class DidNotAct(Exception):
- pass
- class Queue():
- def __init__(self):
- self.items = []
-
- def __bool__(self):
- return bool(self.items)
- def put(self, item, priority):
- heapq.heappush(self.items, (priority, item))
- def get(self):
- return heapq.heappop(self.items)[1]
- @classmethod
- def merge(cls, *args, reverse=False):
- q = cls()
- q.items = list(heapq.merge(*[a.items for a in args], key=lambda x: x[1], reverse=reverse))
- return q
- class InterestQueue(Queue):
- def __add__(self, other):
- self.items += other.items
- return self
-
- def put(self, item):
- heapq.heappush(self.items, item)
-
- def get(self):
- return heapq.heappop(self.items)
-
- @classmethod
- def merge(cls, *args, reverse=False):
- q = cls()
- q.items = list(heapq.merge(*[a.items for a in args], reverse=reverse))
- return q
-
- class ObjectivesQueue(InterestQueue):
- pass
-
- class Base():
- def __repr__(self):
- return f"<{self.__class__.__name__}: {self.__dict__}>"
- class BaseObjective(Base):
- def __init__(self, target):
- self.target = target
- self.interest = 0
- def __lt__(self, other):
- return self.interest < other.interest
- def __repr__(self):
- return f"<{self.__class__.__name__}({self.target.id})>"
- def eval(self, pos = None, d = None):
- self.distance = Grid.manhattan(pos, self.target.pos) if pos is not None else 0
- self.alignment = abs(Grid.diff_directions(Grid.direction_to(*pos, *self.target.pos), d)) if d is not None else 0
- self._compute_interest()
-
- def _compute_interest(self):
- self.interest = 7 * self.distance + 3 * self.alignment
-
- class GetBarrel(BaseObjective):
- def _compute_interest(self):
- self.interest = 6 * self.distance + 9 * self.alignment + 3 * self.target.dispersal + self.target.mine_threat ** 2 - 36 * self.target.ennemy_near
- class Attack(BaseObjective):
- def _compute_interest(self):
- self.interest = 7 * self.distance + 3 * self.alignment + self.target.stock // 4 - 20 * self.target.blocked_since
- class PathNode(tuple):
- def __new__(self, x, y, parent=None):
- n = tuple.__new__(self, (x, y))
- n.parent = parent
- n.cost = 0
- n.orientation = 0
- return n
-
- def __repr__(self):
- return f"<{self[0]}, {self[1]}, c:{self.cost}, o:{self.orientation}>"
- class Grid(Base):
- def __init__(self):
- self.w = 23
- self.h = 21
-
- self._neighbors = {}
- for x in range(-1, self.w + 1):
- for y in range(-1, self.h + 1):
- self.cache_neighbors(x, y)
-
- self.load_entities({})
-
- def __contains__(self, key):
- return 0 <= key[0] < self.w and 0 <= key[1] < self.h
- def __iter__(self):
- for item in ((x, y) for x in range(self.w) for y in range(self.h)):
- yield item
- # data
-
- def load_entities(self, entities):
-
- # special: mines too far from ships are not recorded but still exist
- ghost_mines = []
- if hasattr(self, "mines"):
- for m in self.mines:
- if not m.pos in [e.pos for e in entities.values() if type(e) is Mine]:
- if all((self.manhattan(m.pos, ship.pos) > 5) for ship in self.owned_ships):
- m.ghost = True
- ghost_mines.append(m)
- self.entities = entities
- self.index = {}
- self.ships = []
- self.owned_ships = []
- self.ennemy_ships = []
- self.ships = []
- self.barrels = []
- self.mines = []
- self.cannonballs = []
-
- for e in list(entities.values()) + ghost_mines:
- self.index[e.pos] = e
- type_ = type(e)
-
- if type_ is Ship:
- self.ships.append(e)
- if e.owned:
- self.owned_ships.append(e)
- else:
- self.ennemy_ships.append(e)
- elif type_ is Barrel:
- self.barrels.append(e)
- elif type_ is Mine:
- self.mines.append(e)
- elif type_ is Cannonball:
- self.cannonballs.append(e)
-
- for s in self.owned_ships:
- s.allies = [other for other in self.owned_ships if other is not s]
-
- grav_center = self.barrels_gravity_center()
- for b in self.barrels:
- b.dispersal = Grid.manhattan(grav_center, b.pos) if grav_center != None else 0
- b.mine_threat = any(type(self.at(*c)) is Mine for c in self.neighbors(*b.pos))
- b.ennemy_near = any(b.pos in e.next_area for e in self.ennemy_ships)
-
- for s in self.owned_ships:
-
- for b in self.barrels:
- obj = GetBarrel(b)
- obj.eval(s.next_pos if s.speed else s.prow, s.orientation)
- s.objectives.put(obj)
-
- for e in self.ennemy_ships:
- obj = Attack(e)
- obj.eval(s.next_pos, s.orientation)
- s.ennemies.put(obj)
- self.update_moving_costs()
- def at(self, x, y):
- try:
- return self.index[(x, y)]
- except KeyError:
- return None
-
- def collision_at(self, x, y):
- e = self.at(x, y)
- return type(e) in [Mine, Ship, Cannonball] or not (x, y) in self.__iter__()
-
- def barrels_gravity_center(self):
- wx, wy, wtotal = 0,0,0
- for b in self.barrels:
- wx += (b.x * b.amount)
- wy += (b.y * b.amount)
- wtotal += b.amount
- return (wx // wtotal, wy // wtotal) if wtotal else None
- def update_moving_costs(self):
- base_costs = {}
-
- for x in range(-1, self.w + 1):
- for y in range(-1, self.h + 1):
- base_costs[(x, y)] = 10 # base moving cost
-
- for x, y in base_costs:
- if x in (-1, self.w + 1) or y in (-1, self.h):
- base_costs[(x, y)] = 1000 # out of the map
- elif x in (0, self.w - 1) or y in (0, self.h - 1):
- base_costs[(x, y)] = 15 # borders are a little more expensive
-
- for m in self.mines:
- for n in self.neighbors(*m.pos):
- base_costs[n] += 30
- for m in self.mines:
- base_costs[m.pos] += 1000
- for c in self.cannonballs:
- base_costs[c.pos] += (100 + (5 - c.countdown) * 200)
-
- for ship in self.ships:
- ship._moving_costs = {}
- ship._moving_costs.update(base_costs)
- for other in self.ships:
- if other is ship:
- continue
- dist = self.manhattan(ship.pos, other.pos)
- if dist > 8:
- continue
- for c in self.neighbors(*other.pos):
- ship._moving_costs[c] += 100 * abs(3 - other.speed)
- for c in self.zone(other.next_pos, 4):
- ship._moving_costs[c] += 20
- def shooting_spot(self, ship, target):
- shooting_spots = Queue()
- target_pos = target.next_pos if type(target) is Ship else target.pos
-
- for x, y in self.zone(target_pos, 10):
- if ship.moving_cost(x, y) > 100:
- continue
- if self.manhattan((x, y), target_pos) <= 1:
- continue
-
- interest = 0 # the lower the better
-
- interest += ship.moving_cost(x, y)
-
- # avoid cells too close from borders
- if not (3 <= x <= (self.w - 3) and 3 <= y < (self.h - 3)):
- interest += 10
-
- # priorize spots at distance 5 from active ship
- interest -= 20 * abs(5 - self.manhattan((x, y), ship.pos))
-
- shooting_spots.put((x, y), interest)
- return shooting_spots.get()
-
- # geometrical algorithms
- @staticmethod
- def from_cubic(xu, yu, zu):
- return (zu, int(xu + (zu - (zu & 1)) / 2))
- @staticmethod
- def to_cubic(x, y):
- zu = x
- xu = int(y - (x - (x & 1)) / 2)
- yu = int(-xu - zu)
- return (xu, yu, zu)
- @staticmethod
- def manhattan(from_, to_):
- xa, ya = from_
- xb, yb = to_
- return abs(xa - xb) + abs(ya - yb)
- def zone(self, center, radius):
- buffer = frozenset([center])
- for _ in range(0, radius):
- current = buffer
- for x, y in current:
- buffer |= frozenset(self.abs_neighbors(x, y))
- return [c for c in buffer if 0 <= c[0] < self.w and 0 <= c[1] < self.h]
- @staticmethod
- def closest(from_, in_):
- return min(in_, key=lambda x: Grid.manhattan(from_, x.pos))
- @staticmethod
- def directions(y):
- if y % 2 == 0:
- return [(1, 0), (0, -1), (-1, -1), (-1, 0), (-1, 1), (0, 1)]
- else:
- return [(1, 0), (1,-1), (0,-1), (-1, 0), (0, 1), (1, 1)]
- @staticmethod
- def direction_to(x0, y0, x, y):
- dx, dy = (x - x0), (y - y0)
- if dx > 0:
- if dy == 0:
- return 0
- elif dy > 0:
- return 5
- else:
- return 1
- elif dx < 0:
- if dy == 0:
- return 3
- elif dy > 0:
- return 4
- else:
- return 2
- else:
- if dy > 0:
- return 5 if y0 % 2 == 0 else 4
- else:
- return 1 if y0 % 2 == 0 else 2
- @staticmethod
- def add_directions(d1, d2):
- d = d2 + d1
- if d <= -3:
- d += 6
- elif d > 3:
- d -= 6
- return d
-
- @staticmethod
- def diff_directions(d1, d2):
- d = d2 - d1
- if d <= -3:
- d += 6
- elif d > 3:
- d -= 6
- return d
-
- @staticmethod
- def next_cell(x, y, d, repeat=1):
- for _ in range(repeat):
- dx, dy = Grid.directions(y)[d]
- x, y = x + dx, y + dy
- return x, y
-
- @staticmethod
- def symetry(d):
- return d + 3 if d < 3 else d - 3
-
- @staticmethod
- def abs_neighbors(x, y):
- return ((x + dx, y + dy) for dx, dy in Grid.directions(y))
-
- def cache_neighbors(self, xc, yc):
- self._neighbors[(xc, yc)] = [(x, y) for x, y in Grid.abs_neighbors(xc, yc) if 0 <= x < self.w and 0 <= y < self.h]
- def neighbors(self, x, y):
- try:
- return self._neighbors[(x, y)]
- except KeyError:
- self.cache_neighbors(x, y)
- return self._neighbors[(x, y)]
-
- def rotate(self, center, coordinates, rotations):
- if coordinates == [center] or rotations % 6 == 0:
- return coordinates
- x0, y0 = center
- xu0, yu0, zu0 = self.to_cubic(x0, y0)
- result = []
- for x, y in coordinates:
- xu, yu, zu = self.to_cubic(x, y)
- dxu, dyu, dzu = xu - xu0, yu - yu0, zu - zu0
- for _ in range(rotations):
- dxu, dyu, dzu = -dzu, -dxu, -dyu
- xru, yru, zru = dxu + xu0, dyu + yu0, dzu + zu0
- xr, yr = self.from_cubic(xru, yru, zru)
- result.append((xr, yr))
- return result
- # pathfinding
- def path(self, origin, orientat0, target, moving_costs={}, incl_start=False, limit=10000):
- nodes = Queue()
- break_on, iteration = limit, 0
-
- origin = PathNode(*origin)
- origin.orientation = orientat0
-
- nodes.put(origin, 0)
- neighbors = []
- while nodes:
- current = nodes.get()
- if current == target:
- path = []
- previous = current
- while previous:
- if previous != origin or incl_start:
- path.insert(0, previous)
- previous = previous.parent
- return path
- neighbors = self.neighbors(*current)
- for x, y in neighbors:
-
- if (x, y) == current.parent:
- continue
-
- iteration += 1
- if break_on > 0 and iteration >= break_on:
- return None
-
- moving_cost = moving_costs.get((x, y), 1000)
- if moving_cost >= 1000:
- continue
-
- d = Grid.direction_to(*current, x, y)
- diff = abs(Grid.diff_directions(current.orientation, d))
- if diff > 1:
- # change direction one degree at a time
- continue
-
- if any(moving_costs.get(c, 1000) >= 1000 for c in Ship.get_area(x, y, d)):
- continue
-
- cost = current.cost + moving_cost + diff * 10
- # if diff != 0 and any(moving_costs.get(c, 1000) >= 1000 for c in neighbors):
- # # a direction change here is dangerous
- # cost += 100
-
-
- priority = cost + 10 * Grid.manhattan((x, y), target)
- node = PathNode(x, y, current)
- node.cost = cost
- node.orientation = d
- nodes.put(node, priority)
- else:
- return None
- class Entity(Base):
- def __init__(self, ent_id):
- self.id = int(ent_id)
- self.x, self.y = 0, 0
- self.args = [0,0,0,0]
- def update(self, x, y, *args):
- self.x, self.y = int(x), int(y)
-
- @property
- def pos(self):
- return (self.x, self.y)
-
- def __lt__(self, other):
- # default comparison, used to avoid errors when used with queues and priorities are equals
- return self.id < other.id
-
-
- class Ship(Entity):
- MAX_SPEED = 2
- SCOPE = 10
-
- def __init__(self, *args, **kwargs):
- super().__init__(*args, **kwargs)
- self.x, self.y = 0, 0
- self.orientation = 0
- self.speed = 0
- self.stock = 0
- self.owned = 0
-
- self.next_cell = None
- self.next_pos = None
- self.last_fire = None
- self.last_mining = None
- self.blocked_since = 0
- self.same_traject_since = 0
- self.last_action = ""
- self.allies = []
- self._moving_costs = {}
-
- self.objectives = ObjectivesQueue()
- self.ennemies = ObjectivesQueue()
-
- self.objective = None
- self.objective_next = None
- self.target_ennemy = None
-
- self.path = []
-
- self.distance = 0
- self.alignment = 0
-
- def __repr__(self):
- return f"<Ship {self.id}: pos=({self.x}, {self.y}), orientation={self.orientation}, speed={self.speed}, blocked={self.blocked_since}, last_fire={self.last_fire}, next_pos={self.next_pos}, area={self.area}>"
- def update(self, x, y, *args):
- previous_state = self.state()
- previous_traject = self.traject()
-
- super().update(x, y)
- self.orientation, self.speed, self.stock, self.owned = map(int, args)
- self.objectives = ObjectivesQueue()
- self.ennemies = ObjectivesQueue()
-
- self.objective = None
- self.objective_next = None
- self.target_ennemy = None
-
- self.goto = None
- self.path = []
-
- self.area = Ship.get_area(self.x, self.y, self.orientation)
- self.prow, _, self.stern = self.area
-
- self.next_cell = self.get_next_cell()
- self.next_pos = self.get_next_pos()
- self.next_area = Ship.get_area(*self.next_pos, self.orientation)
-
- self.mobility_zone = list(set(self.area + self.next_area))
-
- if self.traject() != previous_traject:
- self.same_traject_since += 1
- else:
- self.same_traject_since = 0
-
- if self.state() == previous_state:
- self.blocked_since += 1
- else:
- self.blocked_since = 0
- def traject(self):
- return (self.orientation, self.speed)
- def state(self):
- return (self.x, self.y, self.orientation, self.speed)
- @classmethod
- def get_pos_in(cls, current, speed, orientation, in_=1):
- x, y = current
- for _ in range(in_):
- for _ in range(speed):
- dx, dy = Grid.directions(y)[orientation]
- x, y = x + dx, y + dy
- return x, y
- @classmethod
- def get_area(cls, x, y, orientation):
- dx, dy = Grid.directions(y)[Grid.add_directions(orientation, 3)]
- stern = (x + dx, y + dy)
-
- dx, dy = Grid.directions(y)[orientation]
- prow = (x + dx, y + dy)
-
- return [prow, (x, y), stern]
- def get_next_pos(self, in_=1):
- return self.get_pos_in(self.pos, self.speed, self.orientation, in_)
-
- def guess_next_pos(self):
- proba = {}
-
- # wait (or fire or mine)
- for c in self.next_area:
- proba[c] = proba.get(c, 10)
-
- # turn left
- area = self.get_area(*self.pos, Grid.add_directions(self.orientation, 1))
- for c in area:
- proba[c] = proba.get(c, 0) + 10
-
- # turn right
- area = self.get_area(*self.pos, Grid.add_directions(self.orientation, -1))
- for c in area:
- proba[c] = proba.get(c, 0) + 10
-
- # speed up
- if self.speed < self.MAX_SPEED:
- area = self.get_area(*self.get_pos_in(self.pos, self.speed + 1, self.orientation), self.orientation)
- for c in area:
- proba[c] = proba.get(c, 0) + 10
-
- # slow down
- if self.speed > 0:
- area = self.get_area(*self.get_pos_in(self.pos, self.speed - 1, self.orientation), self.orientation)
- for c in area:
- proba[c] = proba.get(c, 0) + 10
-
- for c in proba:
- proba[c] -= self.moving_cost(*c)
- for c in self.area:
- proba[c] = proba.get(c, 0) + 50 * self.blocked_since
- best = max(proba.items(), key=lambda x: x[1])
- return best[0]
-
- def get_next_cell(self, in_=1):
- return Grid.next_cell(self.x, self.y, self.orientation, repeat=in_)
- def in_current_direction(self, x, y):
- return self.orientation == Grid.direction_to(*self.pos, x, y)
- def moving_cost(self, x, y):
- return self._moving_costs.get((x, y), 1000)
-
- def cant_move(self):
-
- front = Grid.next_cell(*self.prow, self.orientation)
- front_left = Grid.next_cell(*self.prow, Grid.add_directions(self.orientation, 1))
- left = Grid.next_cell(*self.prow, Grid.add_directions(self.orientation, 2))
- front_right = Grid.next_cell(*self.prow, Grid.add_directions(self.orientation, -1))
- right = Grid.next_cell(*self.prow, Grid.add_directions(self.orientation, -2))
-
- back_left = Grid.next_cell(*self.stern, Grid.add_directions(self.orientation, 2))
- back_right = Grid.next_cell(*self.stern, Grid.add_directions(self.orientation, -2))
-
- blocked = {c: (self.moving_cost(*c) >= 1000) for c in [front, front_left, left,
- front_right, right,
- back_left, back_right]}
-
- if all(blocked[i] for i in [front, front_left, front_right, left, right]):
- # surrounded
- return True
- elif (blocked[front_left] and blocked[left]) or (blocked[front_right] and blocked[right]):
- # side by side
- return True
- elif blocked[front] and ((blocked[front_left] and blocked[back_right]) or (blocked[front_right] and blocked[back_left])):
- # cannot go front or turn
- return True
-
- return False
-
-
- def move(self, *args, **kwargs):
- try:
- self._move(*args, **kwargs)
- return True
- except DidNotAct:
- return False
- def _move(self, path, danger=[]):
-
- if path is None:
- log(f"(!) broken: automove to {self.goto}")
- self.auto_move(*self.goto)
- return
- elif not path:
- raise DidNotAct()
-
- # speed shall be at 1 when arriving on the "flag"
- next_flag = next((i for i, n in enumerate(path) if n.orientation != self.orientation), None)
- if next_flag is None:
- next_flag = len(path)
-
- diff = Grid.diff_directions(self.orientation, path[0].orientation)
-
- if not self.speed:
- if diff and next_flag == 0:
- # start, with a direction change
- if diff > 0:
- self.turn_left()
- return
-
- elif diff < 0:
- self.turn_right()
- return
- else:
- # start, todo recto
- self.speed_up()
- return
-
- elif self.speed > 1 and next_flag <= (self.speed + 1):
- # the end of the path or a direction change is coming
- self.slow_down()
- return
-
- elif next_flag > self.MAX_SPEED + 1 and self.speed < self.MAX_SPEED:
- # long path and no direction change coming: speed up
- self.speed_up()
- return
-
- elif diff:
- if diff > 0:
- self.turn_left()
- return
-
- elif diff < 0:
- self.turn_right()
- return
-
- raise DidNotAct()
-
- def fire_at_will(self, *args, **kwargs):
- try:
- self._fire_at_will(*args, **kwargs)
- return True
- except DidNotAct:
- return False
-
- def _fire_at_will(self, target, allies = []):
- if not self.can_fire():
- raise DidNotAct()
-
- avoid = []
- if not self in allies:
- allies.append(self)
- for ally in allies:
- avoid += ally.mobility_zone
-
- dist = Grid.manhattan(self.prow, target.next_pos)
- if dist <= 4:
- # precise algo
- shoot_at = target.guess_next_pos()
- log(f"most probable position: {shoot_at}")
- ship.fire(*shoot_at)
-
- elif dist <= self.SCOPE:
- # anticipate
- next_positions = [target.get_next_pos(i) for i in range(1, 3)]
- for i, p in enumerate(next_positions):
- turn = i + 1
-
- if p in avoid:
- continue
-
- dist_p = Grid.manhattan(self.prow, p)
-
- if dist_p > self.SCOPE:
- continue
-
- if (1 + round(dist_p / 3)) == turn:
- log(f"Precision: {p}, {dist_p}, {turn}")
- ship.fire(*p)
- return
-
- # give a try
- next_pos = next_positions[0]
- dist_p = Grid.manhattan(self.prow, next_pos)
- if dist_p <= self.SCOPE:
- ship.fire(*p)
-
- else:
- raise DidNotAct()
-
- def can_mine(self):
- return self.last_mining is None or (current_turn - self.last_mining) >= 4
-
- def can_fire(self):
- return self.last_fire is None or (current_turn - self.last_fire) >= 1
-
- # --- Basic commands
- def _act(self, cmd, *args):
- self.last_action = cmd
- output = " ".join([cmd] + [str(a) for a in args])
- log(f"ship {self.id}: {output}")
- print(output)
-
- def auto_move(self, x, y):
- self._act("MOVE", x, y)
-
- def speed_up(self):
- self._act("FASTER")
-
- def slow_down(self):
- self._act("SLOWER")
-
- def turn_right(self):
- self._act("STARBOARD")
-
- def turn_left(self):
- self._act("PORT")
-
- def wait(self):
- self._act("WAIT")
-
- def mine(self):
- self.last_mining = current_turn
- self._act("MINE")
-
- def fire(self, x, y):
- self.last_fire = current_turn
- self._act("FIRE", x, y)
- class Barrel(Entity):
- def __init__(self, *args, **kwargs):
- super().__init__(*args, **kwargs)
- self.amount = 0
- self.dispersal = 0
- self.mine_threat = False
- self.ennemy_near = False
- def __repr__(self):
- return f"<Barrel {self.id}: pos=({self.x}, {self.y}), amount={self.amount}>"
-
- def update(self, x, y, *args):
- super().update(x, y)
- self.amount = int(args[0])
- class Mine(Entity):
- def __init__(self, *args, **kwargs):
- super().__init__(*args, **kwargs)
- self.ghost = False
- def __repr__(self):
- return f"<Mine {self.id}: pos=({self.x}, {self.y}), ghost={self.ghost}>"
- class Cannonball(Entity):
- def update(self, x, y, *args):
- super().update(x, y)
- self.sender, self.countdown = int(args[0]), int(args[1])
- entities = {}
- map_entity = {"SHIP": Ship,
- "BARREL": Barrel,
- "MINE": Mine,
- "CANNONBALL": Cannonball}
- grid = Grid()
- ### *** Main Loop ***
- while True:
- seen = []
- current_turn += 1
-
- # <--- get input
- my_ship_count, entity_count = int(input()), int(input())
- previous_ent, entities = grid.entities, {}
- for _ in range(entity_count):
- ent_id, ent_type, *data = input().split()
- ent_id = int(ent_id)
- entities[ent_id] = grid.entities.get(ent_id, map_entity[ent_type](ent_id))
- entities[ent_id].update(*data)
- # --->
-
- grid.load_entities(entities)
-
- log(f"### TURN {current_turn}")
-
- # log(f"Owned Ships: {grid.owned_ships}")
- log(f"Ennemy Ships: {grid.ennemy_ships}")
- # log(f"Barrels: {grid.barrels}")
- # log(f"Mines: {grid.mines}")
- log(f"Cannonballs: {grid.cannonballs}")
- ### Acquire
- log("# Acquiring")
-
- # main objective
- while not all(s.objective for s in grid.owned_ships):
- try:
- acquired = sorted([(s, s.objectives.get()) for s in grid.owned_ships if not s.objective], key= lambda x: x[1].interest)
-
- for s, o in acquired:
- if not s.objective and not any(al.objective.target is o.target for al in s.allies if al.objective):
- s.objective = o
-
- except IndexError:
- break
-
- # after_that objective
- for s in grid.owned_ships:
- if not s.objective:
- continue
- if grid.manhattan(s.pos, s.objective.target.pos) > 5:
- continue
- after_that = ObjectivesQueue()
- for b in [o.target for o in s.objectives.items]:
- obj = GetBarrel(b)
- obj.eval(s.objective.target.pos, s.orientation)
- after_that.put(obj)
- if after_that:
- s.objective_next = after_that.get()
-
- # targetted ennemy
- for s in grid.owned_ships:
- s.target_ennemy = s.ennemies.get()
-
- for ship in grid.owned_ships:
- log(f"Ship {ship.id}: obj: {ship.objective}; next: {ship.objective_next}; target: {ship.target_ennemy}")
-
- ### Plan
- log("# Planning")
-
- for ship in grid.owned_ships:
-
- log(f"---- ship {ship.id} ---")
- log(f"ship: {ship}")
-
- if ship.objective or (ship.target_ennemy and ship.target_ennemy.interest < 0):
- ship.goto = ship.objective.target.pos
- elif ship.target_ennemy:
- ship.goto = grid.shooting_spot(ship, ship.target_ennemy.target)
- else:
- log("ERROR: No target")
- continue
-
- log(f"goto: {ship.goto}")
- ship.path = grid.path(ship.next_pos, ship.orientation, ship.goto, ship._moving_costs, limit=6000 // len(grid.owned_ships))
-
- if ship.objective_next and ship.path:
- ship.path += grid.path(ship.goto,
- ship.path[-1].orientation,
- ship.objective_next.target.pos,
- ship._moving_costs,
- limit=6000 // len(grid.owned_ships)) or []
-
- log(f"path: {ship.path}")
-
- ### special: avoid cannonballs
- danger = [c.pos for c in grid.cannonballs if c.countdown <= 1]
-
-
- ### Process
- log("# Processing")
-
- for ship in grid.owned_ships:
- if not ship.objective and not ship.target_ennemy:
- log("No target: wait")
- ship.wait()
-
- if ship.cant_move():
- log("blocked... fire!")
- if ship.fire_at_will(ship.target_ennemy.target, allies=grid.owned_ships):
- continue
-
- if ship.move(ship.path):
- continue
-
- # no movement was required, can fire
- if ship.fire_at_will(ship.target_ennemy.target, allies=grid.owned_ships):
- continue
-
- log("ERROR: Did not act, wait")
- ship.wait()
|