script.py 31 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981
  1. '''
  2. @author: olivier.massot, 2019
  3. '''
  4. import heapq
  5. import sys
  6. # TODO:
  7. # * add an esquive manoeuvre / try to avoid cannonballs
  8. # * if an enemy is near a mine, shoot the mine instead of the ship
  9. # * find a way to change direction without slowing down if possible
  10. # * avoid getting blocked by a side-by-side with an ennemy
  11. # * priorize targetting blocked ennemies
  12. debug = True
  13. def log(*msg):
  14. if debug:
  15. print(*msg, file=sys.stderr)
  16. current_turn = 0
  17. class DidNotAct(Exception):
  18. pass
  19. class Queue():
  20. def __init__(self):
  21. self.items = []
  22. def __bool__(self):
  23. return bool(self.items)
  24. def put(self, item, priority):
  25. heapq.heappush(self.items, (priority, item))
  26. def get(self):
  27. return heapq.heappop(self.items)[1]
  28. @classmethod
  29. def merge(cls, *args, reverse=False):
  30. q = cls()
  31. q.items = list(heapq.merge(*[a.items for a in args], key=lambda x: x[1], reverse=reverse))
  32. return q
  33. class InterestQueue(Queue):
  34. def __add__(self, other):
  35. self.items += other.items
  36. return self
  37. def put(self, item):
  38. heapq.heappush(self.items, item)
  39. def get(self):
  40. return heapq.heappop(self.items)
  41. @classmethod
  42. def merge(cls, *args, reverse=False):
  43. q = cls()
  44. q.items = list(heapq.merge(*[a.items for a in args], reverse=reverse))
  45. return q
  46. class ObjectivesQueue(InterestQueue):
  47. pass
  48. class Base():
  49. def __repr__(self):
  50. return f"<{self.__class__.__name__}: {self.__dict__}>"
  51. class BaseObjective(Base):
  52. def __init__(self, target):
  53. self.target = target
  54. self.interest = 0
  55. def __lt__(self, other):
  56. return self.interest < other.interest
  57. def __repr__(self):
  58. return f"<{self.__class__.__name__}({self.target.id})>"
  59. def eval(self, pos = None, d = None):
  60. self.distance = Grid.manhattan(pos, self.target.pos) if pos is not None else 0
  61. self.alignment = abs(Grid.diff_directions(Grid.direction_to(*pos, *self.target.pos), d)) if d is not None else 0
  62. self._compute_interest()
  63. def _compute_interest(self):
  64. self.interest = 7 * self.distance + 3 * self.alignment
  65. class GetBarrel(BaseObjective):
  66. def _compute_interest(self):
  67. self.interest = 6 * self.distance + 9 * self.alignment + 3 * self.target.dispersal + self.target.mine_threat ** 2 - 36 * self.target.ennemy_near
  68. class Attack(BaseObjective):
  69. def _compute_interest(self):
  70. self.interest = 7 * self.distance + 3 * self.alignment + self.target.stock // 4 - 20 * self.target.blocked_since
  71. class PathNode(tuple):
  72. def __new__(self, x, y, parent=None):
  73. n = tuple.__new__(self, (x, y))
  74. n.parent = parent
  75. n.cost = 0
  76. n.orientation = 0
  77. return n
  78. def __repr__(self):
  79. return f"<{self[0]}, {self[1]}, c:{self.cost}, o:{self.orientation}>"
  80. class Grid(Base):
  81. def __init__(self):
  82. self.w = 23
  83. self.h = 21
  84. self._neighbors = {}
  85. for x in range(-1, self.w + 1):
  86. for y in range(-1, self.h + 1):
  87. self.cache_neighbors(x, y)
  88. self.load_entities({})
  89. def __contains__(self, key):
  90. return 0 <= key[0] < self.w and 0 <= key[1] < self.h
  91. def __iter__(self):
  92. for item in ((x, y) for x in range(self.w) for y in range(self.h)):
  93. yield item
  94. # data
  95. def load_entities(self, entities):
  96. # special: mines too far from ships are not recorded but still exist
  97. ghost_mines = []
  98. if hasattr(self, "mines"):
  99. for m in self.mines:
  100. if not m.pos in [e.pos for e in entities.values() if type(e) is Mine]:
  101. if all((self.manhattan(m.pos, ship.pos) > 5) for ship in self.owned_ships):
  102. m.ghost = True
  103. ghost_mines.append(m)
  104. self.entities = entities
  105. self.index = {}
  106. self.ships = []
  107. self.owned_ships = []
  108. self.ennemy_ships = []
  109. self.ships = []
  110. self.barrels = []
  111. self.mines = []
  112. self.cannonballs = []
  113. for e in list(entities.values()) + ghost_mines:
  114. self.index[e.pos] = e
  115. type_ = type(e)
  116. if type_ is Ship:
  117. self.ships.append(e)
  118. if e.owned:
  119. self.owned_ships.append(e)
  120. else:
  121. self.ennemy_ships.append(e)
  122. elif type_ is Barrel:
  123. self.barrels.append(e)
  124. elif type_ is Mine:
  125. self.mines.append(e)
  126. elif type_ is Cannonball:
  127. self.cannonballs.append(e)
  128. for s in self.owned_ships:
  129. s.allies = [other for other in self.owned_ships if other is not s]
  130. grav_center = self.barrels_gravity_center()
  131. for b in self.barrels:
  132. b.dispersal = Grid.manhattan(grav_center, b.pos) if grav_center != None else 0
  133. b.mine_threat = any(type(self.at(*c)) is Mine for c in self.neighbors(*b.pos))
  134. b.ennemy_near = any(b.pos in e.next_area for e in self.ennemy_ships)
  135. for s in self.owned_ships:
  136. for b in self.barrels:
  137. obj = GetBarrel(b)
  138. obj.eval(s.next_pos if s.speed else s.prow, s.orientation)
  139. s.objectives.put(obj)
  140. for e in self.ennemy_ships:
  141. obj = Attack(e)
  142. obj.eval(s.next_pos, s.orientation)
  143. s.ennemies.put(obj)
  144. self.update_moving_costs()
  145. def at(self, x, y):
  146. try:
  147. return self.index[(x, y)]
  148. except KeyError:
  149. return None
  150. def collision_at(self, x, y):
  151. e = self.at(x, y)
  152. return type(e) in [Mine, Ship, Cannonball] or not (x, y) in self.__iter__()
  153. def barrels_gravity_center(self):
  154. wx, wy, wtotal = 0,0,0
  155. for b in self.barrels:
  156. wx += (b.x * b.amount)
  157. wy += (b.y * b.amount)
  158. wtotal += b.amount
  159. return (wx // wtotal, wy // wtotal) if wtotal else None
  160. def update_moving_costs(self):
  161. base_costs = {}
  162. for x in range(-1, self.w + 1):
  163. for y in range(-1, self.h + 1):
  164. base_costs[(x, y)] = 10 # base moving cost
  165. for x, y in base_costs:
  166. if x in (-1, self.w + 1) or y in (-1, self.h):
  167. base_costs[(x, y)] = 1000 # out of the map
  168. elif x in (0, self.w - 1) or y in (0, self.h - 1):
  169. base_costs[(x, y)] = 15 # borders are a little more expensive
  170. for m in self.mines:
  171. for n in self.neighbors(*m.pos):
  172. base_costs[n] += 30
  173. for m in self.mines:
  174. base_costs[m.pos] += 1000
  175. for c in self.cannonballs:
  176. base_costs[c.pos] += (100 + (5 - c.countdown) * 200)
  177. for ship in self.ships:
  178. ship._moving_costs = {}
  179. ship._moving_costs.update(base_costs)
  180. for other in self.ships:
  181. if other is ship:
  182. continue
  183. dist = self.manhattan(ship.pos, other.pos)
  184. if dist > 8:
  185. continue
  186. for c in self.neighbors(*other.pos):
  187. ship._moving_costs[c] += 100 * abs(3 - other.speed)
  188. for c in self.zone(other.next_pos, 4):
  189. ship._moving_costs[c] += 20
  190. def shooting_spot(self, ship, target):
  191. shooting_spots = Queue()
  192. target_pos = target.next_pos if type(target) is Ship else target.pos
  193. for x, y in self.zone(target_pos, 10):
  194. if ship.moving_cost(x, y) > 100:
  195. continue
  196. if self.manhattan((x, y), target_pos) <= 1:
  197. continue
  198. interest = 0 # the lower the better
  199. interest += ship.moving_cost(x, y)
  200. # avoid cells too close from borders
  201. if not (3 <= x <= (self.w - 3) and 3 <= y < (self.h - 3)):
  202. interest += 30
  203. diff = Grid.direction_to(*ship.prow, x, y)
  204. interest += 10 * abs(diff)
  205. # priorize spots at distance 5 from active ship
  206. interest += (10 * abs(5 - self.manhattan((x, y), ship.pos)))
  207. shooting_spots.put((x, y), interest)
  208. log(shooting_spots.items)
  209. return shooting_spots.get()
  210. # geometrical algorithms
  211. @staticmethod
  212. def from_cubic(xu, yu, zu):
  213. return (zu, int(xu + (zu - (zu & 1)) / 2))
  214. @staticmethod
  215. def to_cubic(x, y):
  216. zu = x
  217. xu = int(y - (x - (x & 1)) / 2)
  218. yu = int(-xu - zu)
  219. return (xu, yu, zu)
  220. @staticmethod
  221. def manhattan(from_, to_):
  222. xa, ya = from_
  223. xb, yb = to_
  224. return abs(xa - xb) + abs(ya - yb)
  225. def zone(self, center, radius):
  226. buffer = frozenset([center])
  227. for _ in range(0, radius):
  228. current = buffer
  229. for x, y in current:
  230. buffer |= frozenset(self.abs_neighbors(x, y))
  231. return [c for c in buffer if 0 <= c[0] < self.w and 0 <= c[1] < self.h]
  232. @staticmethod
  233. def closest(from_, in_):
  234. return min(in_, key=lambda x: Grid.manhattan(from_, x.pos))
  235. @staticmethod
  236. def directions(y):
  237. if y % 2 == 0:
  238. return [(1, 0), (0, -1), (-1, -1), (-1, 0), (-1, 1), (0, 1)]
  239. else:
  240. return [(1, 0), (1,-1), (0,-1), (-1, 0), (0, 1), (1, 1)]
  241. @staticmethod
  242. def direction_to(x0, y0, x, y):
  243. dx, dy = (x - x0), (y - y0)
  244. if dx > 0:
  245. if dy == 0:
  246. return 0
  247. elif dy > 0:
  248. return 5
  249. else:
  250. return 1
  251. elif dx < 0:
  252. if dy == 0:
  253. return 3
  254. elif dy > 0:
  255. return 4
  256. else:
  257. return 2
  258. else:
  259. if dy > 0:
  260. return 5 if y0 % 2 == 0 else 4
  261. else:
  262. return 1 if y0 % 2 == 0 else 2
  263. @staticmethod
  264. def add_directions(d1, d2):
  265. d = d2 + d1
  266. if d <= -3:
  267. d += 6
  268. elif d > 3:
  269. d -= 6
  270. return d
  271. @staticmethod
  272. def diff_directions(d1, d2):
  273. d = d2 - d1
  274. if d <= -3:
  275. d += 6
  276. elif d > 3:
  277. d -= 6
  278. return d
  279. @staticmethod
  280. def next_cell(x, y, d, repeat=1):
  281. for _ in range(repeat):
  282. dx, dy = Grid.directions(y)[d]
  283. x, y = x + dx, y + dy
  284. return x, y
  285. @staticmethod
  286. def symetry(d):
  287. return d + 3 if d < 3 else d - 3
  288. @staticmethod
  289. def abs_neighbors(x, y):
  290. return ((x + dx, y + dy) for dx, dy in Grid.directions(y))
  291. def cache_neighbors(self, xc, yc):
  292. self._neighbors[(xc, yc)] = [(x, y) for x, y in Grid.abs_neighbors(xc, yc) if 0 <= x < self.w and 0 <= y < self.h]
  293. def neighbors(self, x, y):
  294. try:
  295. return self._neighbors[(x, y)]
  296. except KeyError:
  297. self.cache_neighbors(x, y)
  298. return self._neighbors[(x, y)]
  299. def rotate(self, center, coordinates, rotations):
  300. if coordinates == [center] or rotations % 6 == 0:
  301. return coordinates
  302. x0, y0 = center
  303. xu0, yu0, zu0 = self.to_cubic(x0, y0)
  304. result = []
  305. for x, y in coordinates:
  306. xu, yu, zu = self.to_cubic(x, y)
  307. dxu, dyu, dzu = xu - xu0, yu - yu0, zu - zu0
  308. for _ in range(rotations):
  309. dxu, dyu, dzu = -dzu, -dxu, -dyu
  310. xru, yru, zru = dxu + xu0, dyu + yu0, dzu + zu0
  311. xr, yr = self.from_cubic(xru, yru, zru)
  312. result.append((xr, yr))
  313. return result
  314. # pathfinding
  315. def path(self, start, d0, target, moving_costs={}, inertia=0, incl_start=False, limit=10000):
  316. nodes = Queue()
  317. break_on, iteration = limit, 0
  318. inertia_path = []
  319. effective_start = start
  320. for _ in range(inertia):
  321. effective_start = self.next_cell(*effective_start, d0)
  322. n = PathNode(*effective_start)
  323. n.orientation = d0
  324. inertia_path.append(n)
  325. origin = PathNode(*effective_start)
  326. origin.orientation = d0
  327. nodes.put(origin, 0)
  328. neighbors = []
  329. while nodes:
  330. current = nodes.get()
  331. if current == target:
  332. path = []
  333. previous = current
  334. while previous:
  335. if previous != origin or incl_start:
  336. path.insert(0, previous)
  337. previous = previous.parent
  338. return inertia_path + path
  339. neighbors = self.neighbors(*current)
  340. for x, y in neighbors:
  341. if (x, y) == current.parent:
  342. continue
  343. iteration += 1
  344. if break_on > 0 and iteration >= break_on:
  345. return None
  346. moving_cost = moving_costs.get((x, y), 1000)
  347. if moving_cost >= 1000:
  348. continue
  349. d = Grid.direction_to(*current, x, y)
  350. diff = abs(Grid.diff_directions(current.orientation, d))
  351. if diff > 1:
  352. # change direction one degree at a time
  353. continue
  354. if any(moving_costs.get(c, 1000) >= 1000 for c in Ship.get_area(x, y, d)):
  355. continue
  356. cost = current.cost + moving_cost + diff * 10
  357. if (x, y) == effective_start and d == d0:
  358. # prefer to go right at start
  359. cost -= 10
  360. priority = cost + 10 * Grid.manhattan((x, y), target)
  361. node = PathNode(x, y, current)
  362. node.cost = cost
  363. node.orientation = d
  364. nodes.put(node, priority)
  365. else:
  366. return None
  367. class Entity(Base):
  368. def __init__(self, ent_id):
  369. self.id = int(ent_id)
  370. self.x, self.y = 0, 0
  371. self.args = [0,0,0,0]
  372. def update(self, x, y, *args):
  373. self.x, self.y = int(x), int(y)
  374. @property
  375. def pos(self):
  376. return (self.x, self.y)
  377. def __lt__(self, other):
  378. # default comparison, used to avoid errors when used with queues and priorities are equals
  379. return self.id < other.id
  380. class Ship(Entity):
  381. MAX_SPEED = 2
  382. SCOPE = 10
  383. def __init__(self, *args, **kwargs):
  384. super().__init__(*args, **kwargs)
  385. self.x, self.y = 0, 0
  386. self.orientation = 0
  387. self.speed = 0
  388. self.stock = 0
  389. self.owned = 0
  390. self.next_cell = None
  391. self.next_pos = None
  392. self.last_fire = None
  393. self.last_mining = None
  394. self.blocked_since = 0
  395. self.same_traject_since = 0
  396. self.last_action = ""
  397. self.allies = []
  398. self._moving_costs = {}
  399. self.objectives = ObjectivesQueue()
  400. self.ennemies = ObjectivesQueue()
  401. self.objective = None
  402. self.objective_next = None
  403. self.target_ennemy = None
  404. self.path = []
  405. self.distance = 0
  406. self.alignment = 0
  407. def __repr__(self):
  408. return f"<Ship {self.id}: pos=({self.x}, {self.y}), orientation={self.orientation}, speed={self.speed}, blocked={self.blocked_since}, last_fire={self.last_fire}, next_pos={self.next_pos}, area={self.area}>"
  409. def update(self, x, y, *args):
  410. previous_state = self.state()
  411. previous_traject = self.traject()
  412. super().update(x, y)
  413. self.orientation, self.speed, self.stock, self.owned = map(int, args)
  414. self.objectives = ObjectivesQueue()
  415. self.ennemies = ObjectivesQueue()
  416. self.objective = None
  417. self.objective_next = None
  418. self.target_ennemy = None
  419. self.goto = None
  420. self.path = []
  421. self.area = Ship.get_area(self.x, self.y, self.orientation)
  422. self.prow, _, self.stern = self.area
  423. self.next_cell = self.get_next_cell()
  424. self.next_pos = self.get_next_pos()
  425. self.next_area = Ship.get_area(*self.next_pos, self.orientation)
  426. self.front = Grid.next_cell(*self.prow, self.orientation)
  427. self.front_left = Grid.next_cell(*self.prow, Grid.add_directions(self.orientation, 1))
  428. self.left = Grid.next_cell(*self.prow, Grid.add_directions(self.orientation, 2))
  429. self.front_right = Grid.next_cell(*self.prow, Grid.add_directions(self.orientation, -1))
  430. self.right = Grid.next_cell(*self.prow, Grid.add_directions(self.orientation, -2))
  431. self.back_left = Grid.next_cell(*self.stern, Grid.add_directions(self.orientation, 2))
  432. self.back_right = Grid.next_cell(*self.stern, Grid.add_directions(self.orientation, -2))
  433. self.mobility_zone = list(set(self.area + self.next_area))
  434. if self.traject() != previous_traject:
  435. self.same_traject_since += 1
  436. else:
  437. self.same_traject_since = 0
  438. if self.state() == previous_state:
  439. self.blocked_since += 1
  440. else:
  441. self.blocked_since = 0
  442. def traject(self):
  443. return (self.orientation, self.speed)
  444. def state(self):
  445. return (self.x, self.y, self.orientation, self.speed)
  446. @classmethod
  447. def get_pos_in(cls, current, speed, orientation, in_=1):
  448. return Grid.next_cell(*current, orientation, repeat=speed * in_)
  449. @classmethod
  450. def get_area(cls, x, y, orientation):
  451. prow = Grid.next_cell(x, y, orientation)
  452. stern = Grid.next_cell(x, y, Grid.add_directions(orientation, 3))
  453. return [prow, (x, y), stern]
  454. def get_next_pos(self, in_=1):
  455. return self.get_pos_in(self.pos, self.speed, self.orientation, in_)
  456. def guess_next_pos(self):
  457. proba = {}
  458. # wait (or fire or mine)
  459. for c in self.next_area:
  460. proba[c] = proba.get(c, 10)
  461. # turn left
  462. area = self.get_area(*self.pos, Grid.add_directions(self.orientation, 1))
  463. for c in area:
  464. proba[c] = proba.get(c, 0) + 10
  465. # turn right
  466. area = self.get_area(*self.pos, Grid.add_directions(self.orientation, -1))
  467. for c in area:
  468. proba[c] = proba.get(c, 0) + 10
  469. # speed up
  470. if self.speed < self.MAX_SPEED:
  471. area = self.get_area(*self.get_pos_in(self.pos, self.speed + 1, self.orientation), self.orientation)
  472. for c in area:
  473. proba[c] = proba.get(c, 0) + 10
  474. # slow down
  475. if self.speed > 0:
  476. area = self.get_area(*self.get_pos_in(self.pos, self.speed - 1, self.orientation), self.orientation)
  477. for c in area:
  478. proba[c] = proba.get(c, 0) + 10
  479. for c in proba:
  480. proba[c] -= self.moving_cost(*c)
  481. for c in self.area:
  482. proba[c] = proba.get(c, 0) + 50 * self.blocked_since
  483. best = max(proba.items(), key=lambda x: x[1])
  484. return best[0]
  485. def get_next_cell(self, in_=1):
  486. return Grid.next_cell(self.x, self.y, self.orientation, repeat=in_)
  487. def in_current_direction(self, x, y):
  488. return self.orientation == Grid.direction_to(*self.pos, x, y)
  489. def moving_cost(self, x, y):
  490. return self._moving_costs.get((x, y), 1000)
  491. def cant_move(self):
  492. blocked = {c: (self.moving_cost(*c) >= 1000) for c in [self.front, self.front_left, self.left,
  493. self.front_right, self.right,
  494. self.back_left, self.back_right]}
  495. if all(blocked[i] for i in [self.front, self.front_left, self.front_right, self.left, self.right]):
  496. # surrounded
  497. return True
  498. elif (blocked[self.front_left] and blocked[self.left]) or (blocked[self.front_right] and blocked[self.right]):
  499. # side by side
  500. return True
  501. elif blocked[self.front] and ((blocked[self.front_left] and blocked[self.back_right]) or (blocked[self.front_right] and blocked[self.back_left])):
  502. # cannot go front or turn
  503. return True
  504. return False
  505. def move(self, *args, **kwargs):
  506. try:
  507. self._move(*args, **kwargs)
  508. return True
  509. except DidNotAct:
  510. return False
  511. def _move(self, path):
  512. if path is None:
  513. log(f"(!) broken: automove to {self.goto}")
  514. self.auto_move(*self.goto)
  515. return
  516. elif not path:
  517. raise DidNotAct()
  518. # flags represent direction changes of end of the path
  519. last_flag = len(path) - 1
  520. flags = (i for i, n in enumerate(path) if n.orientation != self.orientation)
  521. next_flag = next(flags, last_flag)
  522. afternext_flag = next(flags, last_flag)
  523. log(next_flag, afternext_flag, last_flag)
  524. if not self.speed:
  525. diff = Grid.diff_directions(self.orientation, path[0].orientation)
  526. if diff and next_flag == 0:
  527. # start, with a direction change
  528. if diff > 0:
  529. self.turn_left()
  530. return
  531. elif diff < 0:
  532. self.turn_right()
  533. return
  534. else:
  535. # start straight
  536. self.speed_up()
  537. return
  538. elif self.speed == self.MAX_SPEED:
  539. if self.speed == next_flag and afternext_flag > (next_flag + 1): # there is at least one straight cell after this drift
  540. # drift
  541. diff = Grid.diff_directions(self.orientation, path[next_flag].orientation)
  542. if diff > 0:
  543. self.turn_left()
  544. return
  545. elif diff < 0:
  546. self.turn_right()
  547. return
  548. if (self.speed + 1) >= next_flag:
  549. # next direction change or target will be passed at current speed
  550. self.slow_down()
  551. return
  552. elif self.speed == 1:
  553. if self.speed == next_flag:
  554. diff = Grid.diff_directions(self.orientation, path[next_flag].orientation)
  555. if diff > 0:
  556. self.turn_left()
  557. return
  558. elif diff < 0:
  559. self.turn_right()
  560. return
  561. elif next_flag > 3:
  562. self.speed_up()
  563. return
  564. raise DidNotAct()
  565. def fire_at_will(self, *args, **kwargs):
  566. try:
  567. self._fire_at_will(*args, **kwargs)
  568. return True
  569. except DidNotAct:
  570. return False
  571. def _fire_at_will(self, target, allies = []):
  572. if not self.can_fire():
  573. raise DidNotAct()
  574. avoid = []
  575. if not self in allies:
  576. allies.append(self)
  577. for ally in allies:
  578. avoid += ally.mobility_zone
  579. dist = Grid.manhattan(self.prow, target.next_pos)
  580. if dist <= 4:
  581. # precise algo
  582. shoot_at = target.guess_next_pos()
  583. log(f"most probable position: {shoot_at}")
  584. ship.fire(*shoot_at)
  585. elif dist <= self.SCOPE:
  586. # anticipate
  587. next_positions = [target.get_next_pos(i) for i in range(1, 3)]
  588. for i, p in enumerate(next_positions):
  589. turn = i + 1
  590. if p in avoid:
  591. continue
  592. dist_p = Grid.manhattan(self.prow, p)
  593. if dist_p > self.SCOPE:
  594. continue
  595. if (1 + round(dist_p / 3)) == turn:
  596. log(f"Precision: {p}, {dist_p}, {turn}")
  597. ship.fire(*p)
  598. return
  599. # give a try
  600. next_pos = next_positions[0]
  601. dist_p = Grid.manhattan(self.prow, next_pos)
  602. if dist_p <= self.SCOPE:
  603. ship.fire(*p)
  604. else:
  605. raise DidNotAct()
  606. def can_mine(self):
  607. return self.last_mining is None or (current_turn - self.last_mining) >= 4
  608. def can_fire(self):
  609. return self.last_fire is None or (current_turn - self.last_fire) >= 1
  610. # --- Basic commands
  611. def _act(self, cmd, *args):
  612. self.last_action = cmd
  613. output = " ".join([cmd] + [str(a) for a in args])
  614. log(f"ship {self.id}: {output}")
  615. print(output)
  616. def auto_move(self, x, y):
  617. self._act("MOVE", x, y)
  618. def speed_up(self):
  619. self._act("FASTER")
  620. def slow_down(self):
  621. self._act("SLOWER")
  622. def turn_right(self):
  623. self._act("STARBOARD")
  624. def turn_left(self):
  625. self._act("PORT")
  626. def wait(self):
  627. self._act("WAIT")
  628. def mine(self):
  629. self.last_mining = current_turn
  630. self._act("MINE")
  631. def fire(self, x, y):
  632. self.last_fire = current_turn
  633. self._act("FIRE", x, y)
  634. class Barrel(Entity):
  635. def __init__(self, *args, **kwargs):
  636. super().__init__(*args, **kwargs)
  637. self.amount = 0
  638. self.dispersal = 0
  639. self.mine_threat = False
  640. self.ennemy_near = False
  641. def __repr__(self):
  642. return f"<Barrel {self.id}: pos=({self.x}, {self.y}), amount={self.amount}>"
  643. def update(self, x, y, *args):
  644. super().update(x, y)
  645. self.amount = int(args[0])
  646. class Mine(Entity):
  647. def __init__(self, *args, **kwargs):
  648. super().__init__(*args, **kwargs)
  649. self.ghost = False
  650. def __repr__(self):
  651. return f"<Mine {self.id}: pos=({self.x}, {self.y}), ghost={self.ghost}>"
  652. class Cannonball(Entity):
  653. def update(self, x, y, *args):
  654. super().update(x, y)
  655. self.sender, self.countdown = int(args[0]), int(args[1])
  656. entities = {}
  657. map_entity = {"SHIP": Ship,
  658. "BARREL": Barrel,
  659. "MINE": Mine,
  660. "CANNONBALL": Cannonball}
  661. grid = Grid()
  662. ### *** Main Loop ***
  663. while True:
  664. seen = []
  665. current_turn += 1
  666. # <--- get input
  667. my_ship_count, entity_count = int(input()), int(input())
  668. previous_ent, entities = grid.entities, {}
  669. for _ in range(entity_count):
  670. ent_id, ent_type, *data = input().split()
  671. ent_id = int(ent_id)
  672. entities[ent_id] = grid.entities.get(ent_id, map_entity[ent_type](ent_id))
  673. entities[ent_id].update(*data)
  674. # --->
  675. grid.load_entities(entities)
  676. log(f"### TURN {current_turn}")
  677. # log(f"Owned Ships: {grid.owned_ships}")
  678. log(f"Ennemy Ships: {grid.ennemy_ships}")
  679. # log(f"Barrels: {grid.barrels}")
  680. # log(f"Mines: {grid.mines}")
  681. log(f"Cannonballs: {grid.cannonballs}")
  682. max_it = 6000 // len(grid.owned_ships)
  683. ### Acquire
  684. log("# Acquiring")
  685. # main objective
  686. while not all(s.objective for s in grid.owned_ships):
  687. try:
  688. acquired = sorted([(s, s.objectives.get()) for s in grid.owned_ships if not s.objective], key= lambda x: x[1].interest)
  689. for s, o in acquired:
  690. if not s.objective and not any(al.objective.target is o.target for al in s.allies if al.objective):
  691. s.objective = o
  692. except IndexError:
  693. break
  694. # targetted ennemy
  695. for s in grid.owned_ships:
  696. s.target_ennemy = s.ennemies.get()
  697. ### Plan
  698. log("# Planning")
  699. for ship in grid.owned_ships:
  700. if ship.objective:
  701. ship.goto = ship.objective.target.pos
  702. elif ship.target_ennemy:
  703. ship.goto = grid.shooting_spot(ship, ship.target_ennemy.target)
  704. else:
  705. log("ERROR: No target")
  706. continue
  707. ship.path = grid.path(ship.pos,
  708. ship.orientation,
  709. ship.goto,
  710. moving_costs=ship._moving_costs,
  711. inertia=ship.speed,
  712. limit=max_it)
  713. if ship.objective and ship.path and len(ship.path) <= 5:
  714. # what to do next
  715. after_that = ObjectivesQueue()
  716. for b in [o.target for o in s.objectives.items]:
  717. obj = GetBarrel(b)
  718. obj.eval(ship.path[-1], ship.path[-1].orientation)
  719. after_that.put(obj)
  720. if after_that:
  721. ship.objective_next = after_that.get()
  722. ship.path += grid.path(ship.goto,
  723. ship.path[-1].orientation,
  724. ship.objective_next.target.pos,
  725. ship._moving_costs,
  726. limit=max_it) or []
  727. for ship in grid.owned_ships:
  728. log(f"---- ship {ship.id} ---")
  729. log(f"ship: {ship}")
  730. log(f"obj: {ship.objective}; next: {ship.objective_next}; target: {ship.target_ennemy}")
  731. log(f"goto: {ship.goto}")
  732. log(f"path: {ship.path}")
  733. ### special: avoid cannonballs
  734. danger = [c.pos for c in grid.cannonballs if c.countdown <= 1]
  735. ### Process
  736. log("# Processing")
  737. for ship in grid.owned_ships:
  738. if not ship.objective and not ship.target_ennemy:
  739. log("No target: wait")
  740. ship.wait()
  741. if ship.cant_move():
  742. log("blocked... fire!")
  743. if ship.fire_at_will(ship.target_ennemy.target, allies=grid.owned_ships):
  744. continue
  745. if ship.move(ship.path):
  746. continue
  747. # no movement was required, can fire
  748. if ship.fire_at_will(ship.target_ennemy.target, allies=grid.owned_ships):
  749. continue
  750. log("ERROR: Did not act, wait")
  751. ship.wait()