script.py 33 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011
  1. '''
  2. @author: olivier.massot, 2019
  3. '''
  4. import heapq
  5. import sys
  6. # TODO:
  7. # * add an esquive manoeuvre / try to avoid cannonballs
  8. # * if an enemy is near a mine, shoot the mine instead of the ship
  9. # * find a way to change direction without slowing down if possible
  10. # * avoid getting blocked by a side-by-side with an ennemy
  11. # * priorize targetting blocked ennemies
  12. # * improve the 'avoid' part of the 'fire_at_will' method
  13. # * use a queue to choose the best shoot instead of a strict equality
  14. debug = True
  15. def log(*msg):
  16. if debug:
  17. print(*msg, file=sys.stderr)
  18. current_turn = 0
  19. class DidNotAct(Exception):
  20. pass
  21. class Queue():
  22. def __init__(self):
  23. self.items = []
  24. def __bool__(self):
  25. return bool(self.items)
  26. def __repr__(self):
  27. return str(self.items)
  28. def put(self, item, priority):
  29. heapq.heappush(self.items, (priority, item))
  30. def get(self):
  31. return heapq.heappop(self.items)[1]
  32. @classmethod
  33. def merge(cls, *args, reverse=False):
  34. q = cls()
  35. q.items = list(heapq.merge(*[a.items for a in args], key=lambda x: x[1], reverse=reverse))
  36. return q
  37. class InterestQueue(Queue):
  38. def __add__(self, other):
  39. self.items += other.items
  40. return self
  41. def put(self, item):
  42. heapq.heappush(self.items, item)
  43. def get(self):
  44. return heapq.heappop(self.items)
  45. @classmethod
  46. def merge(cls, *args, reverse=False):
  47. q = cls()
  48. q.items = list(heapq.merge(*[a.items for a in args], reverse=reverse))
  49. return q
  50. class ObjectivesQueue(InterestQueue):
  51. @classmethod
  52. def re_eval(cls, q, pos=None, d=None):
  53. new_q = cls()
  54. while q:
  55. o = q.get()
  56. o.eval(pos, d)
  57. new_q.put(o)
  58. return new_q
  59. class Base():
  60. def __repr__(self):
  61. return f"<{self.__class__.__name__}: {self.__dict__}>"
  62. class BaseObjective(Base):
  63. def __init__(self, target):
  64. self.target = target
  65. self.interest = 0
  66. def __lt__(self, other):
  67. return self.interest < other.interest
  68. def __repr__(self):
  69. return f"<{self.__class__.__name__}: target={self.target.id};int={self.interest})>"
  70. def eval(self, pos = None, d = None):
  71. self.distance = Grid.manhattan(pos, self.target.pos) if pos is not None else 0
  72. self.alignment = abs(Grid.diff_directions(Grid.direction_to(*pos, *self.target.pos), d)) if d is not None else 0
  73. self._compute_interest()
  74. def _compute_interest(self):
  75. self.interest = 7 * self.distance + 3 * self.alignment
  76. class GetBarrel(BaseObjective):
  77. def _compute_interest(self):
  78. self.interest = 6 * self.distance + 9 * self.alignment + 3 * self.target.dispersal + self.target.mine_threat ** 2 - 36 * self.target.ennemy_near
  79. class Attack(BaseObjective):
  80. def _compute_interest(self):
  81. self.interest = 7 * self.distance + 3 * self.alignment + self.target.stock // 4 - 20 * self.target.blocked_since
  82. class PathNode(tuple):
  83. def __new__(self, x, y, parent=None):
  84. n = tuple.__new__(self, (x, y))
  85. n.parent = parent
  86. n.cost = 0
  87. n.orientation = 0
  88. return n
  89. def __repr__(self):
  90. return f"<{self[0]}, {self[1]}, c:{self.cost}, o:{self.orientation}>"
  91. class Grid(Base):
  92. def __init__(self):
  93. self.w = 23
  94. self.h = 21
  95. self._neighbors = {}
  96. for x in range(-1, self.w + 1):
  97. for y in range(-1, self.h + 1):
  98. self.cache_neighbors(x, y)
  99. self.load_entities({})
  100. def __contains__(self, key):
  101. return 0 <= key[0] < self.w and 0 <= key[1] < self.h
  102. def __iter__(self):
  103. for item in ((x, y) for x in range(self.w) for y in range(self.h)):
  104. yield item
  105. # data
  106. def load_entities(self, entities):
  107. # special: mines too far from ships are not recorded but still exist
  108. ghost_mines = []
  109. if hasattr(self, "mines"):
  110. for m in self.mines:
  111. if not m.pos in [e.pos for e in entities.values() if type(e) is Mine]:
  112. if all((self.manhattan(m.pos, ship.pos) > 5) for ship in self.owned_ships):
  113. m.ghost = True
  114. ghost_mines.append(m)
  115. self.entities = entities
  116. self.index = {}
  117. self.ships = []
  118. self.owned_ships = []
  119. self.ennemy_ships = []
  120. self.ships = []
  121. self.barrels = []
  122. self.mines = []
  123. self.cannonballs = []
  124. for e in list(entities.values()) + ghost_mines:
  125. self.index[e.pos] = e
  126. type_ = type(e)
  127. if type_ is Ship:
  128. self.ships.append(e)
  129. if e.owned:
  130. self.owned_ships.append(e)
  131. else:
  132. self.ennemy_ships.append(e)
  133. elif type_ is Barrel:
  134. self.barrels.append(e)
  135. elif type_ is Mine:
  136. self.mines.append(e)
  137. elif type_ is Cannonball:
  138. self.cannonballs.append(e)
  139. for s in self.owned_ships:
  140. s.allies = [other for other in self.owned_ships if other is not s]
  141. self.update_moving_costs()
  142. grav_center = self.barrels_gravity_center()
  143. for b in self.barrels:
  144. b.dispersal = Grid.manhattan(grav_center, b.pos) if grav_center != None else 0
  145. b.mine_threat = any(type(self.at(*c)) is Mine for c in self.neighbors(*b.pos))
  146. b.ennemy_near = any(b.pos in e.next_area for e in self.ennemy_ships)
  147. for s in self.owned_ships:
  148. s._can_move = {c: (s.moving_cost(*c) < 1000) for c in [s.front, s.front_left, s.left, s.front_right,
  149. s.right, s.back_left, s.back_right]}
  150. s.objectives = ObjectivesQueue()
  151. s.ennemies = ObjectivesQueue()
  152. for b in self.barrels:
  153. obj = GetBarrel(b)
  154. obj.eval(s.next_pos if s.speed else s.prow, s.orientation)
  155. s.objectives.put(obj)
  156. for e in self.ennemy_ships:
  157. obj = Attack(e)
  158. obj.eval(s.next_pos, s.orientation)
  159. s.ennemies.put(obj)
  160. def at(self, x, y):
  161. try:
  162. return self.index[(x, y)]
  163. except KeyError:
  164. return None
  165. def collision_at(self, x, y):
  166. e = self.at(x, y)
  167. return type(e) in [Mine, Ship, Cannonball] or not (x, y) in self.__iter__()
  168. def barrels_gravity_center(self):
  169. wx, wy, wtotal = 0,0,0
  170. for b in self.barrels:
  171. wx += (b.x * b.amount)
  172. wy += (b.y * b.amount)
  173. wtotal += b.amount
  174. return (wx // wtotal, wy // wtotal) if wtotal else None
  175. def update_moving_costs(self):
  176. base_costs = {}
  177. for x in range(-1, self.w + 1):
  178. for y in range(-1, self.h + 1):
  179. base_costs[(x, y)] = 10 # base moving cost
  180. for x, y in base_costs:
  181. if x in (-1, self.w + 1) or y in (-1, self.h):
  182. base_costs[(x, y)] = 1000 # out of the map
  183. elif x in (0, self.w - 1) or y in (0, self.h - 1):
  184. base_costs[(x, y)] = 15 # borders are a little more expensive
  185. for m in self.mines:
  186. for n in self.neighbors(*m.pos):
  187. base_costs[n] += 30
  188. for m in self.mines:
  189. base_costs[m.pos] += 1000
  190. for c in self.cannonballs:
  191. base_costs[c.pos] += (100 + (5 - c.countdown) * 200)
  192. for ship in self.ships:
  193. ship._moving_costs = {}
  194. ship._moving_costs.update(base_costs)
  195. for other in self.ships:
  196. if other is ship:
  197. continue
  198. dist = self.manhattan(ship.pos, other.pos)
  199. if dist > 8:
  200. continue
  201. if not other.speed:
  202. for c in other.area:
  203. ship._moving_costs[c] += 1000
  204. else:
  205. for c in self.neighbors(*other.pos):
  206. ship._moving_costs[c] += 100 * abs(3 - other.speed)
  207. for c in self.zone(other.next_pos, 4):
  208. ship._moving_costs[c] += 20
  209. def shooting_spot(self, ship, target):
  210. shooting_spots = Queue()
  211. target_pos = target.next_pos if type(target) is Ship else target.pos
  212. for x, y in self.zone(target_pos, 10):
  213. if ship.moving_cost(x, y) > 100:
  214. continue
  215. if self.manhattan((x, y), target_pos) <= 1:
  216. continue
  217. interest = 0 # the lower the better
  218. interest += ship.moving_cost(x, y)
  219. # avoid cells too close from borders
  220. if not (3 <= x <= (self.w - 3) and 3 <= y < (self.h - 3)):
  221. interest += 30
  222. diff = Grid.direction_to(*ship.prow, x, y)
  223. interest += 10 * abs(diff)
  224. # priorize spots at distance 5 from active ship
  225. interest += (10 * abs(5 - self.manhattan((x, y), ship.pos)))
  226. shooting_spots.put((x, y), interest)
  227. return shooting_spots.get()
  228. # geometrical algorithms
  229. @staticmethod
  230. def from_cubic(xu, yu, zu):
  231. return (zu, int(xu + (zu - (zu & 1)) / 2))
  232. @staticmethod
  233. def to_cubic(x, y):
  234. zu = x
  235. xu = int(y - (x - (x & 1)) / 2)
  236. yu = int(-xu - zu)
  237. return (xu, yu, zu)
  238. @staticmethod
  239. def manhattan(from_, to_):
  240. xa, ya = from_
  241. xb, yb = to_
  242. return abs(xa - xb) + abs(ya - yb)
  243. def zone(self, center, radius):
  244. buffer = frozenset([center])
  245. for _ in range(0, radius):
  246. current = buffer
  247. for x, y in current:
  248. buffer |= frozenset(self.abs_neighbors(x, y))
  249. return [c for c in buffer if 0 <= c[0] < self.w and 0 <= c[1] < self.h]
  250. @staticmethod
  251. def closest(from_, in_):
  252. return min(in_, key=lambda x: Grid.manhattan(from_, x.pos))
  253. @staticmethod
  254. def directions(y):
  255. if y % 2 == 0:
  256. return [(1, 0), (0, -1), (-1, -1), (-1, 0), (-1, 1), (0, 1)]
  257. else:
  258. return [(1, 0), (1,-1), (0,-1), (-1, 0), (0, 1), (1, 1)]
  259. @staticmethod
  260. def direction_to(x0, y0, x, y):
  261. dx, dy = (x - x0), (y - y0)
  262. if dx > 0:
  263. if dy == 0:
  264. return 0
  265. elif dy > 0:
  266. return 5
  267. else:
  268. return 1
  269. elif dx < 0:
  270. if dy == 0:
  271. return 3
  272. elif dy > 0:
  273. return 4
  274. else:
  275. return 2
  276. else:
  277. if dy > 0:
  278. return 5 if y0 % 2 == 0 else 4
  279. else:
  280. return 1 if y0 % 2 == 0 else 2
  281. @staticmethod
  282. def add_directions(d1, d2):
  283. d = d2 + d1
  284. if d < 0:
  285. d += 6
  286. elif d > 5:
  287. d -= 6
  288. return d
  289. @staticmethod
  290. def diff_directions(d1, d2):
  291. d = d2 - d1
  292. if d <= -3:
  293. d += 6
  294. elif d > 3:
  295. d -= 6
  296. return d
  297. @staticmethod
  298. def next_cell(x, y, d, repeat=1):
  299. for _ in range(repeat):
  300. dx, dy = Grid.directions(y)[d]
  301. x, y = x + dx, y + dy
  302. return x, y
  303. @staticmethod
  304. def symetry(d):
  305. return d + 3 if d < 3 else d - 3
  306. @staticmethod
  307. def abs_neighbors(x, y):
  308. return ((x + dx, y + dy) for dx, dy in Grid.directions(y))
  309. def cache_neighbors(self, xc, yc):
  310. self._neighbors[(xc, yc)] = [(x, y) for x, y in Grid.abs_neighbors(xc, yc) if 0 <= x < self.w and 0 <= y < self.h]
  311. def neighbors(self, x, y):
  312. try:
  313. return self._neighbors[(x, y)]
  314. except KeyError:
  315. self.cache_neighbors(x, y)
  316. return self._neighbors[(x, y)]
  317. def rotate(self, center, coordinates, rotations):
  318. if coordinates == [center] or rotations % 6 == 0:
  319. return coordinates
  320. x0, y0 = center
  321. xu0, yu0, zu0 = self.to_cubic(x0, y0)
  322. result = []
  323. for x, y in coordinates:
  324. xu, yu, zu = self.to_cubic(x, y)
  325. dxu, dyu, dzu = xu - xu0, yu - yu0, zu - zu0
  326. for _ in range(rotations):
  327. dxu, dyu, dzu = -dzu, -dxu, -dyu
  328. xru, yru, zru = dxu + xu0, dyu + yu0, dzu + zu0
  329. xr, yr = self.from_cubic(xru, yru, zru)
  330. result.append((xr, yr))
  331. return result
  332. # pathfinding
  333. def path(self, start, d0, target, moving_costs={}, inertia=0, incl_start=False, limit=10000):
  334. nodes = Queue()
  335. break_on, iteration = limit, 0
  336. inertia_path = []
  337. effective_start = start
  338. for _ in range(inertia):
  339. effective_start = self.next_cell(*effective_start, d0)
  340. n = PathNode(*effective_start)
  341. n.orientation = d0
  342. inertia_path.append(n)
  343. origin = PathNode(*effective_start)
  344. origin.orientation = d0
  345. nodes.put(origin, 0)
  346. neighbors = []
  347. while nodes:
  348. current = nodes.get()
  349. if current == target:
  350. path = []
  351. previous = current
  352. while previous:
  353. if previous != origin or incl_start:
  354. path.insert(0, previous)
  355. previous = previous.parent
  356. return inertia_path + path
  357. neighbors = self.neighbors(*current)
  358. for x, y in neighbors:
  359. if (x, y) == current.parent:
  360. continue
  361. iteration += 1
  362. if break_on > 0 and iteration >= break_on:
  363. return None
  364. moving_cost = moving_costs.get((x, y), 1000)
  365. if moving_cost >= 1000:
  366. continue
  367. d = Grid.direction_to(*current, x, y)
  368. diff = abs(Grid.diff_directions(current.orientation, d))
  369. if diff > 1:
  370. # change direction one degree at a time
  371. continue
  372. if any(moving_costs.get(c, 1000) >= 1000 for c in Ship.get_area(x, y, d)):
  373. continue
  374. cost = current.cost + moving_cost + diff * 10
  375. if (x, y) == effective_start and d == d0:
  376. # prefer to go right at start
  377. cost -= 10
  378. priority = cost + 10 * Grid.manhattan((x, y), target)
  379. node = PathNode(x, y, current)
  380. node.cost = cost
  381. node.orientation = d
  382. nodes.put(node, priority)
  383. else:
  384. return None
  385. class Entity(Base):
  386. def __init__(self, ent_id):
  387. self.id = int(ent_id)
  388. self.x, self.y = 0, 0
  389. self.args = [0,0,0,0]
  390. def update(self, x, y, *args):
  391. self.x, self.y = int(x), int(y)
  392. @property
  393. def pos(self):
  394. return (self.x, self.y)
  395. def __lt__(self, other):
  396. # default comparison, used to avoid errors when used with queues and priorities are equals
  397. return self.id < other.id
  398. class Position(Base):
  399. def __init__(self, pos, d, speed):
  400. self.pos = pos
  401. self.d = d
  402. self.speed = speed
  403. class Ship(Entity):
  404. MAX_SPEED = 2
  405. SCOPE = 10
  406. def __init__(self, *args, **kwargs):
  407. super().__init__(*args, **kwargs)
  408. self.x, self.y = 0, 0
  409. self.orientation = 0
  410. self.speed = 0
  411. self.stock = 0
  412. self.owned = 0
  413. self.next_cell = None
  414. self.next_pos = None
  415. self.last_fire = None
  416. self.last_mining = None
  417. self.blocked_since = 0
  418. self.same_traject_since = 0
  419. self.last_action = ""
  420. self.allies = []
  421. self._moving_costs = {}
  422. self.objectives = ObjectivesQueue()
  423. self.ennemies = ObjectivesQueue()
  424. self.objective = None
  425. self.objectives_next = []
  426. self.target_ennemy = None
  427. self.path = []
  428. self.distance = 0
  429. self.alignment = 0
  430. def __repr__(self):
  431. return f"<Ship {self.id}: pos=({self.x}, {self.y}), orientation={self.orientation}, speed={self.speed}, blocked={self.blocked_since}, last_fire={self.last_fire}, next_pos={self.next_pos}, area={self.area}>"
  432. def update(self, x, y, *args):
  433. previous_state = self.state()
  434. previous_traject = self.traject()
  435. super().update(x, y)
  436. self.orientation, self.speed, self.stock, self.owned = map(int, args)
  437. self.objectives = ObjectivesQueue()
  438. self.ennemies = ObjectivesQueue()
  439. self.objective = None
  440. self.objectives_next = []
  441. self.target_ennemy = None
  442. self.goto = None
  443. self.path = []
  444. self.area = Ship.get_area(self.x, self.y, self.orientation)
  445. self.prow, _, self.stern = self.area
  446. self.next_cell = self.get_next_cell()
  447. self.next_pos = self.get_next_pos()
  448. self.next_area = Ship.get_area(*self.next_pos, self.orientation)
  449. self.front = Grid.next_cell(*self.prow, self.orientation)
  450. self.front_left = Grid.next_cell(*self.prow, Grid.add_directions(self.orientation, 1))
  451. self.left = Grid.next_cell(*self.prow, Grid.add_directions(self.orientation, 2))
  452. self.front_right = Grid.next_cell(*self.prow, Grid.add_directions(self.orientation, -1))
  453. self.right = Grid.next_cell(*self.prow, Grid.add_directions(self.orientation, -2))
  454. self.back_left = Grid.next_cell(*self.stern, Grid.add_directions(self.orientation, 1))
  455. self.back_right = Grid.next_cell(*self.stern, Grid.add_directions(self.orientation, -1))
  456. self._can_move = {}
  457. self.mobility_zone = list(set(self.area + self.next_area))
  458. if self.traject() != previous_traject:
  459. self.same_traject_since += 1
  460. else:
  461. self.same_traject_since = 0
  462. if self.state() == previous_state:
  463. self.blocked_since += 1
  464. else:
  465. self.blocked_since = 0
  466. def traject(self):
  467. return (self.orientation, self.speed)
  468. def state(self):
  469. return (self.x, self.y, self.orientation, self.speed)
  470. @classmethod
  471. def get_pos_in(cls, current, speed, orientation, in_=1):
  472. return Grid.next_cell(*current, orientation, repeat=speed * in_)
  473. @classmethod
  474. def get_area(cls, x, y, orientation):
  475. prow = Grid.next_cell(x, y, orientation)
  476. stern = Grid.next_cell(x, y, Grid.add_directions(orientation, 3))
  477. return [prow, (x, y), stern]
  478. def get_next_pos(self, in_=1):
  479. return self.get_pos_in(self.pos, self.speed, self.orientation, in_)
  480. def next_pos_proba(self, in_=1):
  481. # guess next positions
  482. positions = {0: [Position(self.pos, self.orientation, self.speed)]}
  483. for i in range(in_):
  484. positions[i + 1] = []
  485. for p in positions[i]:
  486. if self.moving_cost(*p.pos) >= 1000:
  487. continue
  488. pos, d, speed = p.pos, p.d, p.speed
  489. # next pos with inertia
  490. inertia = Grid.next_cell(*pos, d, repeat=speed)
  491. # wait (or fire or mine)
  492. positions[i + 1].append(Position(inertia, d, speed))
  493. # turn left
  494. positions[i + 1].append(Position(inertia, Grid.add_directions(d, 1), speed))
  495. # turn right
  496. positions[i + 1].append(Position(inertia, Grid.add_directions(d, -1), speed))
  497. # speed up
  498. if speed < self.MAX_SPEED:
  499. positions[i + 1].append(Position(Grid.next_cell(*pos, d, repeat=speed + 1), d, speed + 1))
  500. # slow down
  501. if speed > 0:
  502. positions[i + 1].append(Position(Grid.next_cell(*pos, d, repeat=speed - 1), d, speed - 1))
  503. # agregate
  504. proba = {}
  505. for i, plst in positions.items():
  506. proba[i] = {}
  507. for p in plst:
  508. for c in Ship.get_area(*p.pos, p.d):
  509. proba[i][c] = proba[i].get(c, 0) + 10
  510. # involve the moving cost
  511. for i in proba:
  512. for c in proba[i]:
  513. proba[i][c] -= (self.moving_cost(*c) // 2)
  514. # if ship is blocked, current area is more accurate
  515. for c in self.area:
  516. proba[i][c] = proba[i].get(c, 0) + 40 * self.blocked_since
  517. return proba
  518. def guess_next_positions(self, in_=3):
  519. proba = self.next_pos_proba(in_)
  520. best = {}
  521. for i in proba:
  522. best[i] = max(proba[i].items(), key=lambda x: x[1])[0]
  523. return best
  524. def get_next_cell(self, in_=1):
  525. return Grid.next_cell(self.x, self.y, self.orientation, repeat=in_)
  526. def in_current_direction(self, x, y):
  527. return self.orientation == Grid.direction_to(*self.pos, x, y)
  528. def moving_cost(self, x, y):
  529. return self._moving_costs.get((x, y), 1000)
  530. def can_turn_left(self):
  531. return self._can_move[self.left] and self._can_move[self.back_right]
  532. def can_turn_right(self):
  533. return self._can_move[self.right] and self._can_move[self.back_left]
  534. def can_move_fwd(self):
  535. return self._can_move[self.front]
  536. def can_move(self):
  537. return self.can_move_fwd() or self.can_turn_left() or self.can_turn_left()
  538. def move(self, *args, **kwargs):
  539. try:
  540. self._move(*args, **kwargs)
  541. return True
  542. except DidNotAct:
  543. return False
  544. def _move(self, path):
  545. if path is None:
  546. if self.can_move():
  547. log(f"(!) broken: automove to {self.goto}")
  548. self.auto_move(*self.goto)
  549. return
  550. else:
  551. raise DidNotAct()
  552. elif not path:
  553. raise DidNotAct()
  554. # flags represent direction changes of end of the path
  555. last_flag = len(path) - 1
  556. flags = (i for i, n in enumerate(path) if n.orientation != self.orientation)
  557. next_flag = next(flags, last_flag)
  558. afternext_flag = next(flags, last_flag)
  559. if not self.speed:
  560. diff = Grid.diff_directions(self.orientation, path[0].orientation)
  561. if diff > 0 and self.last_action == "STARBOARD" or diff < 0 and self.last_action == "PORT":
  562. # special: avoid the starting hesitation
  563. self.speed_up()
  564. if diff and next_flag == 0:
  565. # start, with a direction change
  566. if diff > 0:
  567. if self.can_turn_left():
  568. self.turn_left()
  569. return
  570. elif diff < 0:
  571. if self.can_turn_right():
  572. self.turn_right()
  573. return
  574. else:
  575. # start straight
  576. if self.can_move_fwd():
  577. self.speed_up()
  578. return
  579. elif self.speed == self.MAX_SPEED:
  580. if self.speed == next_flag and afternext_flag >= (next_flag + 2): # there is at least one straight cell after this drift
  581. # drift
  582. diff = Grid.diff_directions(self.orientation, path[next_flag].orientation)
  583. if diff > 0:
  584. self.turn_left()
  585. return
  586. elif diff < 0:
  587. self.turn_right()
  588. return
  589. if (self.speed + 1) >= next_flag:
  590. # next direction change or target will be passed at current speed
  591. self.slow_down()
  592. return
  593. elif self.speed == 1:
  594. if self.speed == next_flag:
  595. diff = Grid.diff_directions(self.orientation, path[next_flag].orientation)
  596. if diff > 0:
  597. self.turn_left()
  598. return
  599. elif diff < 0:
  600. self.turn_right()
  601. return
  602. elif next_flag > 3 or (next_flag > 2 and afternext_flag >= (next_flag + 2)):
  603. self.speed_up()
  604. return
  605. raise DidNotAct()
  606. def fire_at_will(self, *args, **kwargs):
  607. try:
  608. self._fire_at_will(*args, **kwargs)
  609. return True
  610. except DidNotAct:
  611. return False
  612. def _fire_at_will(self, target, allies = []):
  613. if not self.can_fire():
  614. raise DidNotAct()
  615. avoid = []
  616. if not self in allies:
  617. allies.append(self)
  618. for ally in allies:
  619. avoid += ally.mobility_zone
  620. next_positions = target.guess_next_positions(in_=3)
  621. for t, next_pos in next_positions.items():
  622. dist = Grid.manhattan(self.prow, next_pos)
  623. if dist > self.SCOPE:
  624. continue
  625. if next_pos in avoid:
  626. continue
  627. dt = (1 + round(dist / 3)) # time for tha cannonball to reach this pos
  628. if (dt + 1) == t:
  629. log(f"precise shoot: {next_pos}")
  630. ship.fire(*next_pos)
  631. return
  632. # give a try
  633. next_pos = next_positions[2]
  634. if not next_pos in avoid:
  635. dist_p = Grid.manhattan(self.prow, next_pos)
  636. if dist_p <= self.SCOPE:
  637. ship.fire(*next_pos)
  638. return
  639. raise DidNotAct()
  640. def can_mine(self):
  641. return self.last_mining is None or (current_turn - self.last_mining) >= 4
  642. def can_fire(self):
  643. return self.last_fire is None or (current_turn - self.last_fire) >= 1
  644. # --- Basic commands
  645. def _act(self, cmd, *args):
  646. self.last_action = cmd
  647. output = " ".join([cmd] + [str(a) for a in args])
  648. log(f"ship {self.id}: {output}")
  649. print(output)
  650. def auto_move(self, x, y):
  651. self._act("MOVE", x, y)
  652. def speed_up(self):
  653. self._act("FASTER")
  654. def slow_down(self):
  655. self._act("SLOWER")
  656. def turn_right(self):
  657. self._act("STARBOARD")
  658. def turn_left(self):
  659. self._act("PORT")
  660. def wait(self):
  661. self._act("WAIT")
  662. def mine(self):
  663. self.last_mining = current_turn
  664. self._act("MINE")
  665. def fire(self, x, y):
  666. self.last_fire = current_turn
  667. self._act("FIRE", x, y)
  668. class Barrel(Entity):
  669. def __init__(self, *args, **kwargs):
  670. super().__init__(*args, **kwargs)
  671. self.amount = 0
  672. self.dispersal = 0
  673. self.mine_threat = False
  674. self.ennemy_near = False
  675. def __repr__(self):
  676. return f"<Barrel {self.id}: pos=({self.x}, {self.y}), amount={self.amount}>"
  677. def update(self, x, y, *args):
  678. super().update(x, y)
  679. self.amount = int(args[0])
  680. class Mine(Entity):
  681. def __init__(self, *args, **kwargs):
  682. super().__init__(*args, **kwargs)
  683. self.ghost = False
  684. def __repr__(self):
  685. return f"<Mine {self.id}: pos=({self.x}, {self.y}), ghost={self.ghost}>"
  686. class Cannonball(Entity):
  687. def update(self, x, y, *args):
  688. super().update(x, y)
  689. self.sender, self.countdown = int(args[0]), int(args[1])
  690. entities = {}
  691. map_entity = {"SHIP": Ship,
  692. "BARREL": Barrel,
  693. "MINE": Mine,
  694. "CANNONBALL": Cannonball}
  695. grid = Grid()
  696. ### *** Main Loop ***
  697. while True:
  698. seen = []
  699. current_turn += 1
  700. # <--- get input
  701. my_ship_count, entity_count = int(input()), int(input())
  702. previous_ent, entities = grid.entities, {}
  703. for _ in range(entity_count):
  704. ent_id, ent_type, *data = input().split()
  705. ent_id = int(ent_id)
  706. entities[ent_id] = grid.entities.get(ent_id, map_entity[ent_type](ent_id))
  707. entities[ent_id].update(*data)
  708. # --->
  709. grid.load_entities(entities)
  710. log(f"### TURN {current_turn}")
  711. # log(f"Owned Ships: {grid.owned_ships}")
  712. log(f"Ennemy Ships: {grid.ennemy_ships}")
  713. log(f"Barrels: {grid.barrels}")
  714. # log(f"Mines: {grid.mines}")
  715. log(f"Cannonballs: {grid.cannonballs}")
  716. max_it = 9000 // len(grid.owned_ships)
  717. ### Acquire
  718. log("# Acquiring")
  719. # main objective
  720. while not all(s.objective for s in grid.owned_ships):
  721. try:
  722. acquired = sorted([(s, s.objectives.get()) for s in grid.owned_ships if not s.objective], key= lambda x: x[1].interest)
  723. for s, o in acquired:
  724. if not s.objective and not any(al.objective.target is o.target for al in s.allies if al.objective):
  725. s.objective = o
  726. except IndexError:
  727. break
  728. # targetted ennemy
  729. for s in grid.owned_ships:
  730. s.target_ennemy = s.ennemies.get()
  731. ### Plan
  732. log("# Planning")
  733. for ship in grid.owned_ships:
  734. it_consumed = 0
  735. if ship.objective:
  736. ship.goto = ship.objective.target.pos
  737. elif ship.target_ennemy:
  738. ship.goto = grid.shooting_spot(ship, ship.target_ennemy.target)
  739. else:
  740. log("ERROR: No target")
  741. continue
  742. ship.path = grid.path(ship.pos,
  743. ship.orientation,
  744. ship.goto,
  745. moving_costs=ship._moving_costs,
  746. inertia=ship.speed,
  747. limit=(max_it - it_consumed))
  748. if ship.objective and ship.path:
  749. while ship.objectives and len(ship.path) < 10:
  750. pos, d = ship.path[-1], ship.path[-1].orientation
  751. ship.objectives = ObjectivesQueue.re_eval(ship.objectives, pos, d)
  752. current_obj = ship.objectives.get()
  753. ship.objectives_next.append(current_obj)
  754. new_path = grid.path(pos, d,
  755. current_obj.target.pos,
  756. ship._moving_costs,
  757. limit=(max_it - it_consumed)) or []
  758. if new_path:
  759. ship.path += new_path
  760. else:
  761. break
  762. for ship in grid.owned_ships:
  763. log(f"---- ship {ship.id} ---")
  764. log(f"ship: {ship}")
  765. log(f"obj: {ship.objective}; next: {ship.objectives_next}; target: {ship.target_ennemy}")
  766. log(f"goto: {ship.goto}")
  767. log(f"path: {ship.path}")
  768. ### Process
  769. log("# Processing")
  770. for ship in grid.owned_ships:
  771. if not ship.objective and not ship.target_ennemy:
  772. log("No target: wait")
  773. ship.wait()
  774. if ship.move(ship.path):
  775. continue
  776. # no movement was required, can fire
  777. if ship.fire_at_will(ship.target_ennemy.target, allies=grid.owned_ships):
  778. continue
  779. log("ERROR: Did not act, wait")
  780. ship.wait()