''' @author: olivier.massot, 2019 ''' import heapq import sys # TODO: # * add an esquive manoeuvre / try to avoid cannonballs # * if an enemy is near a mine, shoot the mine instead of the ship # * find a way to change direction without slowing down if possible # * avoid getting blocked by a side-by-side with an ennemy # * priorize targetting blocked ennemies debug = True def log(*msg): if debug: print(*msg, file=sys.stderr) current_turn = 0 class DidNotAct(Exception): pass class Queue(): def __init__(self): self.items = [] def __bool__(self): return bool(self.items) def put(self, item, priority): heapq.heappush(self.items, (priority, item)) def get(self): return heapq.heappop(self.items)[1] @classmethod def merge(cls, *args, reverse=False): q = cls() q.items = list(heapq.merge(*[a.items for a in args], key=lambda x: x[1], reverse=reverse)) return q class InterestQueue(Queue): def __add__(self, other): self.items += other.items return self def put(self, item): heapq.heappush(self.items, item) def get(self): return heapq.heappop(self.items) @classmethod def merge(cls, *args, reverse=False): q = cls() q.items = list(heapq.merge(*[a.items for a in args], reverse=reverse)) return q class ObjectivesQueue(InterestQueue): pass class Base(): def __repr__(self): return f"<{self.__class__.__name__}: {self.__dict__}>" class BaseObjective(Base): def __init__(self, target): self.target = target self.interest = 0 def __lt__(self, other): return self.interest < other.interest def __repr__(self): return f"<{self.__class__.__name__}({self.target.id})>" def eval(self, pos = None, d = None): self.distance = Grid.manhattan(pos, self.target.pos) if pos is not None else 0 self.alignment = abs(Grid.diff_directions(Grid.direction_to(*pos, *self.target.pos), d)) if d is not None else 0 self._compute_interest() def _compute_interest(self): self.interest = 7 * self.distance + 3 * self.alignment class GetBarrel(BaseObjective): def _compute_interest(self): self.interest = 6 * self.distance + 9 * self.alignment + 3 * self.target.dispersal + self.target.mine_threat ** 2 - 36 * self.target.ennemy_near class Attack(BaseObjective): def _compute_interest(self): self.interest = 7 * self.distance + 3 * self.alignment + self.target.stock // 4 - 20 * self.target.blocked_since class PathNode(tuple): def __new__(self, x, y, parent=None): n = tuple.__new__(self, (x, y)) n.parent = parent n.cost = 0 n.orientation = 0 return n def __repr__(self): return f"<{self[0]}, {self[1]}, c:{self.cost}, o:{self.orientation}>" class Grid(Base): def __init__(self): self.w = 23 self.h = 21 self._neighbors = {} for x in range(-1, self.w + 1): for y in range(-1, self.h + 1): self.cache_neighbors(x, y) self.load_entities({}) def __contains__(self, key): return 0 <= key[0] < self.w and 0 <= key[1] < self.h def __iter__(self): for item in ((x, y) for x in range(self.w) for y in range(self.h)): yield item # data def load_entities(self, entities): # special: mines too far from ships are not recorded but still exist ghost_mines = [] if hasattr(self, "mines"): for m in self.mines: if not m.pos in [e.pos for e in entities.values() if type(e) is Mine]: if all((self.manhattan(m.pos, ship.pos) > 5) for ship in self.owned_ships): m.ghost = True ghost_mines.append(m) self.entities = entities self.index = {} self.ships = [] self.owned_ships = [] self.ennemy_ships = [] self.ships = [] self.barrels = [] self.mines = [] self.cannonballs = [] for e in list(entities.values()) + ghost_mines: self.index[e.pos] = e type_ = type(e) if type_ is Ship: self.ships.append(e) if e.owned: self.owned_ships.append(e) else: self.ennemy_ships.append(e) elif type_ is Barrel: self.barrels.append(e) elif type_ is Mine: self.mines.append(e) elif type_ is Cannonball: self.cannonballs.append(e) for s in self.owned_ships: s.allies = [other for other in self.owned_ships if other is not s] self.update_moving_costs() grav_center = self.barrels_gravity_center() for b in self.barrels: b.dispersal = Grid.manhattan(grav_center, b.pos) if grav_center != None else 0 b.mine_threat = any(type(self.at(*c)) is Mine for c in self.neighbors(*b.pos)) b.ennemy_near = any(b.pos in e.next_area for e in self.ennemy_ships) for s in self.owned_ships: s._can_move = {c: (s.moving_cost(*c) < 1000) for c in [s.front, s.front_left, s.left, s.front_right, s.right, s.back_left, s.back_right]} for b in self.barrels: obj = GetBarrel(b) obj.eval(s.next_pos if s.speed else s.prow, s.orientation) s.objectives.put(obj) for e in self.ennemy_ships: obj = Attack(e) obj.eval(s.next_pos, s.orientation) s.ennemies.put(obj) def at(self, x, y): try: return self.index[(x, y)] except KeyError: return None def collision_at(self, x, y): e = self.at(x, y) return type(e) in [Mine, Ship, Cannonball] or not (x, y) in self.__iter__() def barrels_gravity_center(self): wx, wy, wtotal = 0,0,0 for b in self.barrels: wx += (b.x * b.amount) wy += (b.y * b.amount) wtotal += b.amount return (wx // wtotal, wy // wtotal) if wtotal else None def update_moving_costs(self): base_costs = {} for x in range(-1, self.w + 1): for y in range(-1, self.h + 1): base_costs[(x, y)] = 10 # base moving cost for x, y in base_costs: if x in (-1, self.w + 1) or y in (-1, self.h): base_costs[(x, y)] = 1000 # out of the map elif x in (0, self.w - 1) or y in (0, self.h - 1): base_costs[(x, y)] = 15 # borders are a little more expensive for m in self.mines: for n in self.neighbors(*m.pos): base_costs[n] += 30 for m in self.mines: base_costs[m.pos] += 1000 for c in self.cannonballs: base_costs[c.pos] += (100 + (5 - c.countdown) * 200) for ship in self.ships: ship._moving_costs = {} ship._moving_costs.update(base_costs) for other in self.ships: if other is ship: continue dist = self.manhattan(ship.pos, other.pos) if dist > 8: continue if not other.speed: for c in other.area: ship._moving_costs[c] += 1000 else: for c in self.neighbors(*other.pos): ship._moving_costs[c] += 100 * abs(3 - other.speed) for c in self.zone(other.next_pos, 4): ship._moving_costs[c] += 20 def shooting_spot(self, ship, target): shooting_spots = Queue() target_pos = target.next_pos if type(target) is Ship else target.pos for x, y in self.zone(target_pos, 10): if ship.moving_cost(x, y) > 100: continue if self.manhattan((x, y), target_pos) <= 1: continue interest = 0 # the lower the better interest += ship.moving_cost(x, y) # avoid cells too close from borders if not (3 <= x <= (self.w - 3) and 3 <= y < (self.h - 3)): interest += 30 diff = Grid.direction_to(*ship.prow, x, y) interest += 10 * abs(diff) # priorize spots at distance 5 from active ship interest += (10 * abs(5 - self.manhattan((x, y), ship.pos))) shooting_spots.put((x, y), interest) log(shooting_spots.items) return shooting_spots.get() # geometrical algorithms @staticmethod def from_cubic(xu, yu, zu): return (zu, int(xu + (zu - (zu & 1)) / 2)) @staticmethod def to_cubic(x, y): zu = x xu = int(y - (x - (x & 1)) / 2) yu = int(-xu - zu) return (xu, yu, zu) @staticmethod def manhattan(from_, to_): xa, ya = from_ xb, yb = to_ return abs(xa - xb) + abs(ya - yb) def zone(self, center, radius): buffer = frozenset([center]) for _ in range(0, radius): current = buffer for x, y in current: buffer |= frozenset(self.abs_neighbors(x, y)) return [c for c in buffer if 0 <= c[0] < self.w and 0 <= c[1] < self.h] @staticmethod def closest(from_, in_): return min(in_, key=lambda x: Grid.manhattan(from_, x.pos)) @staticmethod def directions(y): if y % 2 == 0: return [(1, 0), (0, -1), (-1, -1), (-1, 0), (-1, 1), (0, 1)] else: return [(1, 0), (1,-1), (0,-1), (-1, 0), (0, 1), (1, 1)] @staticmethod def direction_to(x0, y0, x, y): dx, dy = (x - x0), (y - y0) if dx > 0: if dy == 0: return 0 elif dy > 0: return 5 else: return 1 elif dx < 0: if dy == 0: return 3 elif dy > 0: return 4 else: return 2 else: if dy > 0: return 5 if y0 % 2 == 0 else 4 else: return 1 if y0 % 2 == 0 else 2 @staticmethod def add_directions(d1, d2): d = d2 + d1 if d <= -3: d += 6 elif d > 3: d -= 6 return d @staticmethod def diff_directions(d1, d2): d = d2 - d1 if d <= -3: d += 6 elif d > 3: d -= 6 return d @staticmethod def next_cell(x, y, d, repeat=1): for _ in range(repeat): dx, dy = Grid.directions(y)[d] x, y = x + dx, y + dy return x, y @staticmethod def symetry(d): return d + 3 if d < 3 else d - 3 @staticmethod def abs_neighbors(x, y): return ((x + dx, y + dy) for dx, dy in Grid.directions(y)) def cache_neighbors(self, xc, yc): self._neighbors[(xc, yc)] = [(x, y) for x, y in Grid.abs_neighbors(xc, yc) if 0 <= x < self.w and 0 <= y < self.h] def neighbors(self, x, y): try: return self._neighbors[(x, y)] except KeyError: self.cache_neighbors(x, y) return self._neighbors[(x, y)] def rotate(self, center, coordinates, rotations): if coordinates == [center] or rotations % 6 == 0: return coordinates x0, y0 = center xu0, yu0, zu0 = self.to_cubic(x0, y0) result = [] for x, y in coordinates: xu, yu, zu = self.to_cubic(x, y) dxu, dyu, dzu = xu - xu0, yu - yu0, zu - zu0 for _ in range(rotations): dxu, dyu, dzu = -dzu, -dxu, -dyu xru, yru, zru = dxu + xu0, dyu + yu0, dzu + zu0 xr, yr = self.from_cubic(xru, yru, zru) result.append((xr, yr)) return result # pathfinding def path(self, start, d0, target, moving_costs={}, inertia=0, incl_start=False, limit=10000): nodes = Queue() break_on, iteration = limit, 0 inertia_path = [] effective_start = start for _ in range(inertia): effective_start = self.next_cell(*effective_start, d0) n = PathNode(*effective_start) n.orientation = d0 inertia_path.append(n) origin = PathNode(*effective_start) origin.orientation = d0 nodes.put(origin, 0) neighbors = [] while nodes: current = nodes.get() if current == target: path = [] previous = current while previous: if previous != origin or incl_start: path.insert(0, previous) previous = previous.parent return inertia_path + path neighbors = self.neighbors(*current) for x, y in neighbors: if (x, y) == current.parent: continue iteration += 1 if break_on > 0 and iteration >= break_on: return None moving_cost = moving_costs.get((x, y), 1000) if moving_cost >= 1000: continue d = Grid.direction_to(*current, x, y) diff = abs(Grid.diff_directions(current.orientation, d)) if diff > 1: # change direction one degree at a time continue if any(moving_costs.get(c, 1000) >= 1000 for c in Ship.get_area(x, y, d)): continue cost = current.cost + moving_cost + diff * 10 if (x, y) == effective_start and d == d0: # prefer to go right at start cost -= 10 priority = cost + 10 * Grid.manhattan((x, y), target) node = PathNode(x, y, current) node.cost = cost node.orientation = d nodes.put(node, priority) else: return None class Entity(Base): def __init__(self, ent_id): self.id = int(ent_id) self.x, self.y = 0, 0 self.args = [0,0,0,0] def update(self, x, y, *args): self.x, self.y = int(x), int(y) @property def pos(self): return (self.x, self.y) def __lt__(self, other): # default comparison, used to avoid errors when used with queues and priorities are equals return self.id < other.id class Ship(Entity): MAX_SPEED = 2 SCOPE = 10 def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.x, self.y = 0, 0 self.orientation = 0 self.speed = 0 self.stock = 0 self.owned = 0 self.next_cell = None self.next_pos = None self.last_fire = None self.last_mining = None self.blocked_since = 0 self.same_traject_since = 0 self.last_action = "" self.allies = [] self._moving_costs = {} self.objectives = ObjectivesQueue() self.ennemies = ObjectivesQueue() self.objective = None self.objective_next = None self.target_ennemy = None self.path = [] self.distance = 0 self.alignment = 0 def __repr__(self): return f"" def update(self, x, y, *args): previous_state = self.state() previous_traject = self.traject() super().update(x, y) self.orientation, self.speed, self.stock, self.owned = map(int, args) self.objectives = ObjectivesQueue() self.ennemies = ObjectivesQueue() self.objective = None self.objective_next = None self.target_ennemy = None self.goto = None self.path = [] self.area = Ship.get_area(self.x, self.y, self.orientation) self.prow, _, self.stern = self.area self.next_cell = self.get_next_cell() self.next_pos = self.get_next_pos() self.next_area = Ship.get_area(*self.next_pos, self.orientation) self.front = Grid.next_cell(*self.prow, self.orientation) self.front_left = Grid.next_cell(*self.prow, Grid.add_directions(self.orientation, 1)) self.left = Grid.next_cell(*self.prow, Grid.add_directions(self.orientation, 2)) self.front_right = Grid.next_cell(*self.prow, Grid.add_directions(self.orientation, -1)) self.right = Grid.next_cell(*self.prow, Grid.add_directions(self.orientation, -2)) self.back_left = Grid.next_cell(*self.stern, Grid.add_directions(self.orientation, 1)) self.back_right = Grid.next_cell(*self.stern, Grid.add_directions(self.orientation, -1)) self._can_move = {} self.mobility_zone = list(set(self.area + self.next_area)) if self.traject() != previous_traject: self.same_traject_since += 1 else: self.same_traject_since = 0 if self.state() == previous_state: self.blocked_since += 1 else: self.blocked_since = 0 def traject(self): return (self.orientation, self.speed) def state(self): return (self.x, self.y, self.orientation, self.speed) @classmethod def get_pos_in(cls, current, speed, orientation, in_=1): return Grid.next_cell(*current, orientation, repeat=speed * in_) @classmethod def get_area(cls, x, y, orientation): prow = Grid.next_cell(x, y, orientation) stern = Grid.next_cell(x, y, Grid.add_directions(orientation, 3)) return [prow, (x, y), stern] def get_next_pos(self, in_=1): return self.get_pos_in(self.pos, self.speed, self.orientation, in_) def guess_next_pos(self): proba = {} # wait (or fire or mine) for c in self.next_area: proba[c] = proba.get(c, 10) # turn left area = self.get_area(*self.pos, Grid.add_directions(self.orientation, 1)) for c in area: proba[c] = proba.get(c, 0) + 10 # turn right area = self.get_area(*self.pos, Grid.add_directions(self.orientation, -1)) for c in area: proba[c] = proba.get(c, 0) + 10 # speed up if self.speed < self.MAX_SPEED: area = self.get_area(*self.get_pos_in(self.pos, self.speed + 1, self.orientation), self.orientation) for c in area: proba[c] = proba.get(c, 0) + 10 # slow down if self.speed > 0: area = self.get_area(*self.get_pos_in(self.pos, self.speed - 1, self.orientation), self.orientation) for c in area: proba[c] = proba.get(c, 0) + 10 for c in proba: proba[c] -= self.moving_cost(*c) for c in self.area: proba[c] = proba.get(c, 0) + 50 * self.blocked_since best = max(proba.items(), key=lambda x: x[1]) return best[0] def get_next_cell(self, in_=1): return Grid.next_cell(self.x, self.y, self.orientation, repeat=in_) def in_current_direction(self, x, y): return self.orientation == Grid.direction_to(*self.pos, x, y) def moving_cost(self, x, y): return self._moving_costs.get((x, y), 1000) def can_turn_left(self): return self._can_move[self.left] and self._can_move[self.back_right] def can_turn_right(self): return self._can_move[self.right] and self._can_move[self.back_left] def can_move_fwd(self): return self._can_move[self.front] def can_move(self): return self.can_move_fwd() or self.can_turn_left() or self.can_turn_left() def move(self, *args, **kwargs): try: self._move(*args, **kwargs) return True except DidNotAct: return False def _move(self, path): log(self._can_move, self.can_turn_left(), self.can_turn_right(), self.can_move_fwd()) if path is None: if self.can_move(): log(f"(!) broken: automove to {self.goto}") self.auto_move(*self.goto) return elif not path: raise DidNotAct() # flags represent direction changes of end of the path last_flag = len(path) - 1 flags = (i for i, n in enumerate(path) if n.orientation != self.orientation) next_flag = next(flags, last_flag) afternext_flag = next(flags, last_flag) if not self.speed: diff = Grid.diff_directions(self.orientation, path[0].orientation) if diff and next_flag == 0: # start, with a direction change if diff > 0: if self.can_turn_left(): self.turn_left() return elif diff < 0: if self.can_turn_right(): self.turn_right() return else: # start straight if self.can_move_fwd(): self.speed_up() return elif self.speed == self.MAX_SPEED: if self.speed == next_flag and afternext_flag > (next_flag + 1): # there is at least one straight cell after this drift # drift diff = Grid.diff_directions(self.orientation, path[next_flag].orientation) if diff > 0: self.turn_left() return elif diff < 0: self.turn_right() return if (self.speed + 1) >= next_flag: # next direction change or target will be passed at current speed self.slow_down() return elif self.speed == 1: if self.speed == next_flag: diff = Grid.diff_directions(self.orientation, path[next_flag].orientation) if diff > 0: self.turn_left() return elif diff < 0: self.turn_right() return elif next_flag > 3: self.speed_up() return raise DidNotAct() def fire_at_will(self, *args, **kwargs): try: self._fire_at_will(*args, **kwargs) return True except DidNotAct: return False def _fire_at_will(self, target, allies = []): if not self.can_fire(): raise DidNotAct() avoid = [] if not self in allies: allies.append(self) for ally in allies: avoid += ally.mobility_zone dist = Grid.manhattan(self.prow, target.next_pos) if dist <= 4: # precise algo shoot_at = target.guess_next_pos() log(f"most probable position: {shoot_at}") ship.fire(*shoot_at) elif dist <= self.SCOPE: # anticipate next_positions = [target.get_next_pos(i) for i in range(1, 3)] for i, p in enumerate(next_positions): turn = i + 1 if p in avoid: continue dist_p = Grid.manhattan(self.prow, p) if dist_p > self.SCOPE: continue if (1 + round(dist_p / 3)) == turn: log(f"Precision: {p}, {dist_p}, {turn}") ship.fire(*p) return # give a try next_pos = next_positions[0] dist_p = Grid.manhattan(self.prow, next_pos) if dist_p <= self.SCOPE: ship.fire(*p) else: raise DidNotAct() def can_mine(self): return self.last_mining is None or (current_turn - self.last_mining) >= 4 def can_fire(self): return self.last_fire is None or (current_turn - self.last_fire) >= 1 # --- Basic commands def _act(self, cmd, *args): self.last_action = cmd output = " ".join([cmd] + [str(a) for a in args]) log(f"ship {self.id}: {output}") print(output) def auto_move(self, x, y): self._act("MOVE", x, y) def speed_up(self): self._act("FASTER") def slow_down(self): self._act("SLOWER") def turn_right(self): self._act("STARBOARD") def turn_left(self): self._act("PORT") def wait(self): self._act("WAIT") def mine(self): self.last_mining = current_turn self._act("MINE") def fire(self, x, y): self.last_fire = current_turn self._act("FIRE", x, y) class Barrel(Entity): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.amount = 0 self.dispersal = 0 self.mine_threat = False self.ennemy_near = False def __repr__(self): return f"" def update(self, x, y, *args): super().update(x, y) self.amount = int(args[0]) class Mine(Entity): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.ghost = False def __repr__(self): return f"" class Cannonball(Entity): def update(self, x, y, *args): super().update(x, y) self.sender, self.countdown = int(args[0]), int(args[1]) entities = {} map_entity = {"SHIP": Ship, "BARREL": Barrel, "MINE": Mine, "CANNONBALL": Cannonball} grid = Grid() ### *** Main Loop *** while True: seen = [] current_turn += 1 # <--- get input my_ship_count, entity_count = int(input()), int(input()) previous_ent, entities = grid.entities, {} for _ in range(entity_count): ent_id, ent_type, *data = input().split() ent_id = int(ent_id) entities[ent_id] = grid.entities.get(ent_id, map_entity[ent_type](ent_id)) entities[ent_id].update(*data) # ---> grid.load_entities(entities) log(f"### TURN {current_turn}") # log(f"Owned Ships: {grid.owned_ships}") log(f"Ennemy Ships: {grid.ennemy_ships}") # log(f"Barrels: {grid.barrels}") # log(f"Mines: {grid.mines}") log(f"Cannonballs: {grid.cannonballs}") max_it = 6000 // len(grid.owned_ships) ### Acquire log("# Acquiring") # main objective while not all(s.objective for s in grid.owned_ships): try: acquired = sorted([(s, s.objectives.get()) for s in grid.owned_ships if not s.objective], key= lambda x: x[1].interest) for s, o in acquired: if not s.objective and not any(al.objective.target is o.target for al in s.allies if al.objective): s.objective = o except IndexError: break # targetted ennemy for s in grid.owned_ships: s.target_ennemy = s.ennemies.get() ### Plan log("# Planning") for ship in grid.owned_ships: if ship.objective: ship.goto = ship.objective.target.pos elif ship.target_ennemy: ship.goto = grid.shooting_spot(ship, ship.target_ennemy.target) else: log("ERROR: No target") continue ship.path = grid.path(ship.pos, ship.orientation, ship.goto, moving_costs=ship._moving_costs, inertia=ship.speed, limit=max_it) if ship.objective and ship.path and len(ship.path) <= 5: # what to do next after_that = ObjectivesQueue() for b in [o.target for o in s.objectives.items]: obj = GetBarrel(b) obj.eval(ship.path[-1], ship.path[-1].orientation) after_that.put(obj) if after_that: ship.objective_next = after_that.get() ship.path += grid.path(ship.goto, ship.path[-1].orientation, ship.objective_next.target.pos, ship._moving_costs, limit=max_it) or [] for ship in grid.owned_ships: log(f"---- ship {ship.id} ---") log(f"ship: {ship}") log(f"obj: {ship.objective}; next: {ship.objective_next}; target: {ship.target_ennemy}") log(f"goto: {ship.goto}") log(f"path: {ship.path}") ### Process log("# Processing") for ship in grid.owned_ships: if not ship.objective and not ship.target_ennemy: log("No target: wait") ship.wait() if ship.move(ship.path): continue # no movement was required, can fire if ship.fire_at_will(ship.target_ennemy.target, allies=grid.owned_ships): continue log("ERROR: Did not act, wait") ship.wait()