''' >> https://www.codingame.com/ide/173171838252e7c6fd6f3ff9cb8169431a08eec1 @author: olivier.massot, may 2019 ''' from collections import Counter import heapq import sys import time # TODO # * when building a tower, check that there is not already one, and block the cell for moving # * do not train a unit of a cell if it is in a threatened pivot zone, especially not a level 3 unit! # * take units and towers in account when computing the threat # * take units and towers in account when computing the strategig value # * review the tower placement in case of threat debug = True t0 = time.time() def log(*msg): if debug: print("{} - ".format(str(time.time() - t0)[1:5]), *msg, file=sys.stderr) # OWNER ME = 0 OPPONENT = 1 # BUILDING TYPE HQ = 0 class Base(): def __repr__(self): return f"<{self.__class__.__name__}: {self.__dict__}>" class Queue(Base): def __init__(self): self.items = [] def __bool__(self): return bool(self.items) def __repr__(self): return str(self.items) def put(self, item, priority): heapq.heappush(self.items, (priority, item)) def fput(self, item, priority): while priority in [p for p, _ in self.items]: priority += 1 self.put(item, priority) def get(self): return heapq.heappop(self.items)[1] class InterestQueue(Queue): def __add__(self, other): self.items += other.items return self def put(self, item): heapq.heappush(self.items, item) def get(self): return heapq.heappop(self.items) class BasePosition(Base): def __init__(self, cell, *args, **kwargs): self.interest = 0 self.cell = cell @property def x(self): return self.cell.x @property def y(self): return self.cell.y @property def pos(self): return self.cell.pos def __lt__(self, other): return self.interest < other.interest def eval(self): raise NotImplementedError class Position(BasePosition): def __init__(self, cell): super().__init__(cell) self.possession = 0 self.threat = 0 self.strategic_value = 0 self.pivot = 0 self.union = 0 self.depth = 0 self.hq = 0 self.tower = 0 self.mine = 0 self.dist_to_goal = 0 self.min_level = 1 def pre_eval(self): # *** Eval interest: the lower the better self.interest = 0 self.min_level = 1 # eval possession if self.cell.active_owned: self.possession = 1 elif self.cell.active_opponent: self.possession = -1 # eval threat self.threat = 0 if self.cell.active_owned: self.threat = self.cell.threat # eval strategic value self.strategic_value = self.cell.strategic_value # covers (towers only) self.covers = self.strategic_value + sum([grid[n].strategic_value for n in self.cell.neighbors]) # eval pivot self.pivot = sum([1 + grid[p].get_unit_level() for p in self.cell.pivot_for]) # distance to the ennemy HQ self.dist_to_goal = Grid.manhattan(self.cell.pos, opponent.hq.pos) # distance to the own HQ self.dist_to_hq = Grid.manhattan(self.cell.pos, player.hq.pos) # priorize adjacent cells self.union = len([n for n in self.cell.neighbors if grid[n].active_owned]) # include 'depthmap' self.depth = self.cell.depth # priorize mines or HQ if self.cell.building: self.hq = int(self.cell.building.type_ == Building.HQ) self.tower = int(self.cell.building.type_ == Building.TOWER) self.mine = int(self.cell.building.type_ == Building.MINE) # *** Min level to go there if self.cell.unit and self.cell.unit.opponents: self.min_level = min([self.cell.unit.level + 1, 3]) if self.cell.under_tower: self.min_level = 3 def eval(self): self.pre_eval() self.interest = 3 * self.depth + self.dist_to_goal def __repr__(self): detail = [self.possession, self.threat, self.strategic_value, self.pivot, self.dist_to_goal, self.union, self.depth, self.hq, self.tower, self.mine] return "<{} {}: {}, {} ({})>".format(self.__class__.__name__, self.pos, self.interest, self.min_level, detail) class Defend(Position): def __init__(self, cell, emergency = False): super().__init__(cell) self.emergency = emergency def __repr__(self): detail = [self.threat, self.covers, self.pivot, self.emergency, self.dist_to_hq] return "<{} {}: {}, {} ({})>".format(self.__class__.__name__, self.pos, self.interest, self.min_level, detail) def eval(self): self.pre_eval() self.interest = 100 \ - 10 * self.threat \ - self.covers // 5 \ - 5 * self.pivot \ - 20 * self.emergency * (22 - self.dist_to_hq) class Attack(Position): def eval(self): self.pre_eval() self.interest = 15 * self.possession \ - 5 * self.pivot \ - 2 * self.union \ + 3 * self.depth \ + self.dist_to_goal \ - 30 * self.tower \ - 15 * self.mine \ - 100 * self.hq class MinePosition(BasePosition): def __init__(self, target, type_): self.type_ = type_ super().__init__(target, type_) def eval(self): # the lower the better self.interest = 0 if self.type_ == Building.MINE: self.interest -= self.target.depth elif self.type_ == Building.TOWER: if self.target.pivot: self.interest -= 20 class BaseLoc(Base): def __init__(self, x, y): self.x = x self.y = y @property def pos(self): return self.x, self.y class MineSite(BaseLoc): def __init__(self, x, y): super().__init__(x, y) class BaseOwnedLoc(BaseLoc): def __init__(self, x, y, owner): super().__init__(x, y) self.owner = owner @property def owned(self): return self.owner == ME @property def opponents(self): return self.owner == OPPONENT class Building(BaseOwnedLoc): HQ = 0 MINE = 1 TOWER = 2 cost = {0: 0, 1: 20, 2: 15} maintenance = {0: 0, 1: 0, 2: 0} def __init__(self, owner, type_, x, y): super().__init__(x, y, owner) self.type_ = type_ @property def hq(self): return self.type_ == Building.HQ class Unit(BaseOwnedLoc): cost = {1: 10, 2: 20, 3: 30} maintenance = {1: 1, 2: 4, 3: 20} def __init__(self, owner, id_, level, x, y): super().__init__(x, y, owner) self.id_ = id_ self.level = level self.has_moved = False class Player(Base): def __init__(self, id_): self.id_ = id_ self.gold = 0 self.income = 0 self.units = [] self.buildings = [] self.hq = None self.spent = 0 self.new_charges = 0 def update(self, gold, income, units, buildings): self.gold = gold self.income = income self.units = [u for u in units if u.owner == self.id_] self.buildings = [b for b in buildings if b.owner == self.id_] self.hq = next((b for b in self.buildings if b.type_ == HQ)) self.spent = 0 self.new_charges = 0 @property def current_gold(self): return self.gold - self.spent @property def current_income(self): return self.income - self.new_charges def training_capacity(self): return min([(self.gold - self.spent) // Unit.cost[1], (self.income - self.new_charges) // Unit.maintenance[1]]) def max_affordable(self): for lvl in range(3, 0, -1): if (self.gold - self.spent) >= Unit.cost[lvl] and (self.income - self.new_charges) >= Unit.maintenance[lvl]: return lvl return 0 def can_act(self): return self.training_capacity() > 0 or self.gold >= 15 or any(not unit.has_moved for unit in self.units) class Cell(Base): def __init__(self, x, y): self.x = x self.y = y self._content = "#" self.neighbors = [] self.unit = None self.building = None self.mine_site = None self.under_tower = False self.depth = 0 self.pivot_for = [] self.strategic_value = 0 self.threat = 0 # front cells self.facing = [] self.support = [] self.in_front_of = [] @property def pos(self): return self.x, self.y @property def raw_val(self): return self._content def update(self, content, unit = None, building = None): self._content = content self.unit = unit self.building = building self.under_tower = False self.depth = 0 self.pivot_for = [] self.strategic_value = 0 self.threat = 0 self.facing = [] self.support = [] self.in_front_of = [] @property def movable(self): return self._content != "#" @property def owned(self): return self._content.lower() == "o" @property def opponents(self): return self._content.lower() == "x" @property def owner(self): if self.owned: return ME elif self.opponents: return OPPONENT else: return None @property def headquarter(self): return self.pos in Grid.hqs @property def occupied(self): return self.unit or self.building @property def active(self): return self._content.isupper() @property def active_owned(self): return self._content == "O" @property def active_opponent(self): return self._content == "X" def owned_unit(self): if self.unit and self.unit.owned: return self.unit def owned_building(self): if self.building and self.building.owned: return self.building def take_possession(self): self._content = "O" def desactivate(self): self._content = self._content.lower() def get_unit_level(self): return self.unit.level if self.unit else 0 class Node(Base): def __init__(self, pos, path=[]): self.pos = pos self.path = path class Grid(Base): dim = 12 hqs = [(0,0), (11,11)] def __init__(self, mines_sites = []): self.cells = {(x, y): Cell(x, y) for x in range(Grid.dim) for y in range(Grid.dim)} for pos, cell in self.cells.items(): cell.neighbors = [p for p in self.neighbors(*pos) if p in self.cells] self.units = [] self.buildings = [] for m in mines_sites: self.cells[(m.x, m.y)].mine_site = m self.threat_level = 0 def print_grid(self): return "\n".join(["".join([c for c in row]) for row in self.grid]) @property def pos(self): return self.x, self.y @property def grid(self): return [[self.cells[(x, y)].raw_val for x in range(Grid.dim)] for y in range(Grid.dim)] def __getitem__(self, key): return self.cells[key] def update(self, grid, buildings, units): buildings_ix = {(b.x, b.y): b for b in buildings} units_ix= {(u.x, u.y): u for u in units} self.buildings = list(buildings) self.units = list(units) for y, row in enumerate(grid): for x, c in enumerate(row): self.cells[(x, y)].update(c, units_ix.get((x, y), None), buildings_ix.get((x, y), None)) self.update_pivots() self.update_state() def update_state(self): self.update_tower_areas() self.update_frontlines() self.update_depth_map() self.update_threats() @staticmethod def manhattan(from_, to_): xa, ya = from_ xb, yb = to_ return abs(xa - xb) + abs(ya - yb) def neighbors(self, x, y, diags=False): neighs = [(x, y - 1), (x - 1, y), (x + 1, y), (x, y + 1)] if diags: neighs += [(x - 1, y - 1), (x + 1, y - 1), (x - 1, y + 1), (x + 1, y + 1)] return [(x, y) for x, y in neighs if 0 <= x < Grid.dim and 0 <= y < Grid.dim] @classmethod def zone(cls, center, radius): return [(x, y) for x in range(0, cls.dim) for y in range(0, cls.dim) if cls.manhattan(center, (x, y)) <= radius] def zone_set(self, center, radius): zone = set(center) for _ in range(radius): for p in zone: zone |= self.neighbors(*p) @staticmethod def closest(from_, in_): return min(in_, key=lambda x: Grid.manhattan(from_, x)) def get_hq(self, player_id): return next((b for b in self.buildings if b.owner == player_id and b.hq)) def update_tower_areas(self): for b in self.buildings: if b.type_ == Building.TOWER: self.cells[b.pos].under_tower = True for n in self.cells[b.pos].neighbors: self.cells[n].under_tower = True def update_frontlines(self): # update the current frontlines self.frontline = [] self.frontex = [] for cell in self.cells.values(): if cell.active_owned: if any(self.cells[c].movable and not self.cells[c].active_owned for c in cell.neighbors): self.frontline.append(cell) def update_depth_map(self): buffer = [c.pos for c in self.frontline] for p in buffer: self.cells[p].depth = 1 next_buffer = [] while buffer: for p in buffer: for n in self.cells[p].neighbors: if self.cells[n].active_owned and not self.cells[n].depth: self.cells[n].depth = self.cells[p].depth + 1 next_buffer.append(n) buffer = list(next_buffer) next_buffer = [] def _active_owned(self, pos, player_id): c = self.cells[pos] return c.owner == player_id and c.active def update_pivot_for(self, player_id): start = self.get_hq(player_id).pos start_node = Node(start) buffer = [start_node] nodes = {start_node} ignored = [p for p in self.cells if len([n for n in self.neighbors(*p, diags=True) if self._active_owned(n, player_id)]) == 8] while buffer: new_buffer = [] for node in buffer: if node.pos in ignored: continue for n in self.neighbors(*node.pos): if not n in node.path and self._active_owned(n, player_id): new_node = Node(n, node.path + [node.pos]) nodes.add(new_node) new_buffer.append(new_node) buffer = new_buffer paths_to = {} for node in nodes: if not node.pos in paths_to: paths_to[node.pos] = [] paths_to[node.pos].append(node.path) pivots = {} for candidate in paths_to: if candidate == start: continue for p, paths in paths_to.items(): if not paths or not paths[0] or p in ignored: continue if all(candidate in path for path in paths): if not candidate in pivots: pivots[candidate] = [] pivots[candidate].append(p) for pivot, pivot_for in pivots.items(): self.cells[pivot].pivot_for = pivot_for occurrences = Counter(sum(sum(paths_to.values(), []), [])) while ignored: new_ignored = set() for p in ignored: occured_neighbors = [occurrences[n] for n in self.neighbors(*p) if n in occurrences] if not occured_neighbors: new_ignored.add[p] continue occurrences[p] = 2 * sum(occured_neighbors) // len(occured_neighbors) ignored = new_ignored max_occ = max(occurrences.values()) if occurrences else 1 for p, occ in occurrences.items(): self.cells[p].strategic_value = (100 * occ) // max_occ # if player_id == ME: # log(pivots) # log(occurrences) # log({cell.pos: cell.strategic_value for cell in self.cells.values() if cell.owned}) def update_pivots(self): self.update_pivot_for(ME) self.update_pivot_for(OPPONENT) def update_threats(self): # 1 + max number of units opponents can produce in one turn self.threat_level = 1 + min([(opponent.gold + opponent.income) // Unit.cost[1], opponent.income // Unit.maintenance[1]]) ennemy_frontier = [c for c in self.cells.values() if c.opponents \ and any(self.cells[n].movable and not self.cells[n].opponents for n in c.neighbors)] for cell in self.cells.values(): if cell.owned: threat = min([Grid.manhattan(cell.pos, o.pos) for o in ennemy_frontier]) cell.threat = self.threat_level - threat self.emergency = grid[player.hq.pos].threat > 0 # log({c.pos: c.threat for c in self.cells.values() if c.owned and c.threat is not None}) def influence_zone(self, player_id): owned, neighbors = {p for p, c in self.cells.items() if c.owner == player_id and c.active}, set() for p in owned: neighbors |= set(self.neighbors(*p)) return (self.cells[p] for p in (owned | neighbors) if self.cells[p].movable) def training_places(self): return (c for c in self.influence_zone(ME) if self.can_move(c.pos)) def get_next_training(self, max_level=3): q = InterestQueue() for cell in self.training_places(): q.put(Position(cell)) if not q: return None action = q.get() if max_level < 3: while action.cell.under_tower: try: action = q.get() except IndexError: return None level = 1 for ennemy in opponent.units: if Grid.manhattan(action.cell.pos, ennemy.pos) < 3: level = min(ennemy.level + 1, max_level) break action.level = level return action def can_move(self, pos, level=1): cell = self.cells[pos] can_move = True can_move &= cell.movable can_move &= not cell.owned_unit() can_move &= not cell.owned_building() if level != 3: can_move &= (cell.unit is None or cell.unit.level < level) can_move &= cell.owned or not cell.under_tower return can_move def moving_zone(self, unit): return (self.cells[p] for p in self.cells[unit.pos].neighbors if self.can_move(p, unit.level)) def get_next_move(self, unit): q = InterestQueue() for cell in self.moving_zone(unit): o = Position(cell) o.eval() q.put(o) if not q: return None objective = q.get() return objective def building_zone(self, type_): if type_ == Building.MINE: return [cell for cell in self.cells.values() if cell.mine_site and cell.depth > 3] else: return [] def get_building_site(self, type_): q = InterestQueue() for cell in self.building_zone(type_): q.put(Position(cell, type_)) if not q: return None return q.get() def remove_unit_from(self, cell): opponent.units.remove(cell.unit) self.units.remove(cell.unit) cell.unit = None def cost_for_new_mine(self): return Building.cost[Building.MINE] + 4 * len([b for b in player.buildings if b.type_ == Building.MINE]) def apply(self, action): if type(action) is Move: old_cell, new_cell = self.cells[action.unit.pos], action.cell if new_cell.unit: if new_cell.unit.owned: log("ERROR: impossible move") return if action.unit.level < 3 and new_cell.unit.level >= action.unit.level: log("ERROR: impossible move") return # cell is occupied by an opponent's unit with an inferior level self.remove_unit_from(new_cell) if new_cell.building and new_cell.building.type_ == Building.TOWER: if action.unit.level < 3: log("ERROR: impossible move") opponent.buildings.remove(new_cell.building) self.buildings.remove(new_cell.building) new_cell.building = None old_cell.unit = None action.unit.x, action.unit.y = new_cell.pos new_cell.unit = action.unit action.unit.has_moved = True if not new_cell.owned: if new_cell.opponents: for p in new_cell.pivot_for: self.cells[p].desactivate() if self.cells[p].unit and self.cells[p].unit.opponents: self.remove_unit_from(self.cells[p]) new_cell.take_possession() self.update_state() elif type(action) is Train: new_cell = action.cell unit = Unit(ME, None, action.level, *new_cell.pos) unit.has_moved = True player.spent += Unit.cost[action.level] player.new_charges += Unit.maintenance[action.level] if new_cell.unit: if new_cell.unit.owned: log("ERROR: impossible training") return if unit.level < 3 and new_cell.unit.level >= unit.level: log("ERROR: impossible training") return # cell is occupied by an opponent's unit with an inferior level self.remove_unit_from(new_cell) if new_cell.building and new_cell.building.type_ == Building.TOWER: if unit.level < 3: log("ERROR: impossible training") opponent.buildings.remove(new_cell.building) self.buildings.remove(new_cell.building) new_cell.building = None new_cell.unit = unit if not new_cell.owned: if new_cell.opponents: for p in new_cell.pivot_for: self.cells[p].desactivate() if self.cells[p].unit and self.cells[p].unit.opponents: self.remove_unit_from(self.cells[p]) new_cell.take_possession() self.update_state() elif type(action) is BuildTower: new_cell = action.cell building = Building(ME, Building.TOWER, *new_cell.pos) new_cell.building = building player.buildings.append(building) player.spent += Building.cost[Building.TOWER] if building.type_ == Building.TOWER: new_cell.under_tower = True for n in new_cell.neighbors: self.cells[n].under_tower = True self.update_state() elif type(action) is BuildMine: player.spent += self.cost_for_new_mine() new_cell = action.cell building = Building(ME, Building.MINE, *new_cell.pos) new_cell.building = building player.buildings.append(building) class Action(Base): def command(self): raise NotImplementedError() class Wait(Action): def command(self): return "WAIT" class Move(Action): def __init__(self, unit, cell): self.unit = unit self.cell = cell def __repr__(self): return f"<{self.__class__.__name__}: {self.unit.id_} {self.cell.pos}>" def command(self): return f"MOVE {self.unit.id_} {self.cell.x} {self.cell.y}" class Train(Action): def __init__(self, level, cell): self.level = level self.cell = cell def __repr__(self): return f"<{self.__class__.__name__}: {self.level} {self.cell.pos}>" def command(self): return f"TRAIN {self.level} {self.cell.x} {self.cell.y}" class Build(Action): str_types = {1: "MINE", 2: "TOWER"} def __init__(self, type_, cell): self.type_ = type_ self.cell = cell def __repr__(self): return f"<{self.__class__.__name__}: {self.str_types[self.type_]} {self.cell.pos}>" def command(self): return f"BUILD {self.str_types[self.type_]} {self.cell.x} {self.cell.y}" class BuildTower(Build): def __init__(self, cell): super().__init__(Building.TOWER, cell) class BuildMine(Build): def __init__(self, cell): super().__init__(Building.MINE, cell) # ******** MAIN ************* test = False if test: mines_input = [] else: mines_input = [input() for _ in range(int(input()))] mines_sites = [MineSite(*[int(j) for j in item.split()]) for item in mines_input] # log(f"* mines: {mines_sites}") grid = Grid(mines_sites) player = Player(ME) opponent = Player(OPPONENT) def cmd_wait(): return "WAIT" def get_input(): if test: gold, income = 20, 1 opponent_gold, opponent_income = 20, 1 new_grid_input = ['O..#########', '...###...###', '...###....##', '#..##.....##', '...#......##', '#.........##', '##.........#', '##......#...', '##.....##..#', '##....###...', '###...###...', '#########..X'] buildings_input = ['0 0 0 0', '1 0 11 11'] units_input = [] else: gold, income = int(input()), int(input()) opponent_gold, opponent_income = int(input()), int(input()) new_grid_input = [input() for _ in range(12)] buildings_input = [input() for _ in range(int(input()))] units_input = [input() for _ in range(int(input()))] # log(gold, income, opponent_gold, opponent_income) # log(new_grid_input) # log(buildings_input) # log(units_input) return gold, income, opponent_gold, opponent_income, new_grid_input, buildings_input, units_input while True: # <--- get and parse input gold, income, opponent_gold, opponent_income, new_grid_input, buildings_input, units_input = get_input() new_grid = [list(row) for row in new_grid_input] buildings = [Building(*[int(j) for j in item.split()]) for item in buildings_input] # log(f"* buildings: {buildings}") units = [Unit(*[int(j) for j in item.split()]) for item in units_input] # log(f"* units: {units}") # ---> # <--- update player.update(gold, income, units, buildings) # log(f"player: {player}") opponent.update(opponent_gold, opponent_income, units, buildings) # log(f"opponent: {opponent}") grid.update(new_grid, buildings, units) # log(f"grid:\n{grid.print_grid()}") # ---> commands = [] # start log(f"Threat level: {grid.threat_level}") if grid.emergency: log(" HQ is threaten!") todo = [] abandonned = [] while player.can_act(): q = InterestQueue() for cell in grid.influence_zone(ME): if cell.movable and not cell in abandonned: if cell.owned and cell.threat > 0 and cell.pos != player.hq.pos: p = Defend(cell, grid.emergency) elif not cell.owned: p = Attack(cell) else: continue p.eval() q.put(p) if not q: break objective = q.get() if type(objective) is Defend: if player.current_gold > Building.cost[Building.TOWER] and not objective.cell.mine_site: action = BuildTower(objective.cell) else: # TODO: recruit units abandonned.append(objective.cell) continue elif type(objective) is Attack: near_unit = next((grid[n].unit for n in objective.cell.neighbors if grid[n].unit \ and grid[n].unit.owned \ and not grid[n].unit.has_moved \ and grid[n].unit.level >= objective.min_level), None) if near_unit: action = Move(near_unit, objective.cell) else: if objective.min_level > player.max_affordable(): abandonned.append(objective.cell) continue action = Train(objective.min_level, objective.cell) log(f"priority: {action} -> {objective}") grid.apply(action) todo.append(action) # units which did not move for unit in player.units: if not unit.has_moved: objective = grid.get_next_move(unit) if objective: action = Move(unit, objective.cell) log(f"default: {action}") grid.apply(action) todo.append(action) else: log(f" No move available for {unit}") # can build mines? if player.current_gold > grid.cost_for_new_mine(): action = BuildMine(grid.get_building_site(Building.MINE)) if action: log(f"default: {action}") grid.apply(action) todo.append(action) log(f"* todo: {todo}") commands = [action.command() for action in todo] if not commands: log("nothing to do: wait") commands = ["WAIT"] log(f"* commands: {commands}") print(";".join(commands))