

Sauf mention contraire, le contenu de cet ouvrage est publié sous la licence :
Creative Commons BY-NC-SA 2.0

La copie de cet ouvrage est autorisée sous réserve du respect des conditions de la licence
Texte complet de la licence disponible sur : http://creativecommons.org/licenses/by-nc-sa/2.0/fr/

Simple IT 2013 - ISBN : 979-10-90085-48-0

Avant-propos

E n quelques années, les sites web n’ont cessé d’évoluer. Le développement d’un
banal site web devient de plus en plus long et difficile. Aujourd’hui, la simple
page web ne suffit plus, que ce soit dans un cadre professionnel ou personnel, les

attentes sont de plus en plus lourdes. C’est de cette problématique qu’est né Django,
un framework Python permettant de réaliser des sites web !

Django propose un développement plus efficace et plus rapide d’un site web complet,
tout en conservant la qualité du code et sa maintenance ! Développé tout d’abord par un
journal local américain en 2003, l’idée originelle de Django était de permettre aisément
le développement de sites web complets interagissant avec une base de données. Au-
jourd’hui, le framework est non seulement devenu public et libre, mais est maintenu par
la Django Software Foundation, une fondation s’occupant uniquement du framework,
soutenue par une forte communauté très active et expérimentée. Le framework n’a
cessé d’évoluer d’année en année et est aujourd’hui la référence pour le développement
web en Python. De plus en plus de sociétés, de la petite entreprise à la multinationale,
utilisent Django et recherchent des développeurs sachant l’utiliser.

Django, « pour les perfectionnistes sous pression »

Aujourd’hui, le principal problème des débutants souhaitant s’attaquer à un frame-
work est le manque de cours pédagogiques et donc accessibles à n’importe quel novice.
Lorsque nous avons découvert Django il y a quelques années, aucun cours complet en
français n’existait, et ceux en anglais n’étaient pas forcément tous à jour ou très com-
préhensibles et ne donnaient pas forcément les bonnes pratiques dès le départ. Notre
apprentissage de Django a donc été long et difficile.

Partis de ce constat, nous avons décidé de rédiger le cours que vous vous apprêtez à
découvrir. Via le Site du Zéro, nous avons commencé la rédaction de ce cours en 2012 et
les retours ont été immédiats : de nombreux lecteurs intéressés par Django souhaitaient
que nous le terminions et nous ont apporté leur contribution pour le perfectionner.

Cependant, aborder un framework web est toujours un passage délicat. Afin de com-
mencer ce cours dans de bonnes conditions, vous avez besoin de quelques connaissances.
Bien évidemment, une bonne connaissance de Python, le langage de programmation
utilisé par Django, est nécessaire. Vous ne devez pas être un expert de Python pour

i

CHAPITRE 0. AVANT-PROPOS

autant : le framework ne requiert que des connaissances relativement basiques. Enfin,
il est également obligatoire de savoir manier un minimum le HTML et le CSS avant
d’aborder ce cours : ces langages sont à la base de n’importe quel site web.

Qu’allez-vous apprendre en lisant ce livre ?

Le but de ce cours est de vous apprendre à construire avec Django des sites web
complexes et élégants en un temps record. Pour ce faire, nous avons utilisé une méthode
d’apprentissage progressive :

1. Mise en place du contexte : qu’est-ce qu’un framework ? Nous en parlons
depuis le début de cet avant-propos sans même l’avoir défini ! En quoi consiste-t-il
et comment fonctionne-t-il ? Nous verrons également les principes fondamentaux
qui nous permettront d’avoir toutes les clés en main afin de démarrer correctement
un projet.

2. Les bases de Django : cœur de ce cours, c’est la partie la plus importante : nous
allons vous présenter pas à pas, via des exemples pertinents, le fonctionnement de
chaque composant de Django : comment créer une page web, enregistrer et utiliser
des données dans une base de données, construire vos pages avec du HTML grâce
aux templates, mettre en place une administration, etc.

3. Techniques avancées : il n’est pas toujours facile d’appréhender toutes les
spécifités d’une composante du premier coup. Pour cette raison, nous avons choisi
de revenir de façon plus profonde sur certaines d’entre elles dans un second temps.

4. Outils supplémentaires : enfin, comme tout framework, Django regorge de
modules et utilitaires simplifiant la vie du développeur au quotidien. Nous pas-
serons en revue les élements phares du framework : la gestion d’utilisateurs, la
traduction en plusieurs langues du contenu de votre site, l’amélioration des per-
formances grâce aux caches, l’envoi de notifications aux utilisateurs, etc.

Comment lire ce livre ?

Suivez l’ordre des chapitres

Lisez ce livre comme on lit un roman. Il a été conçu pour cela.

Contrairement à beaucoup de livres techniques où il est courant de lire en diagonale et
de sauter certains chapitres, il est ici très fortement recommandé de suivre l’ordre du
cours, à moins que vous ne soyez déjà un peu expérimentés.

Pratiquez en même temps

Pratiquez régulièrement. N’attendez pas d’avoir fini de lire ce livre pour allumer votre
ordinateur et faire vos propres essais.

ii

REMERCIEMENTS

Utilisez les codes web !

Afin de tirer parti du Site du Zéro dont ce livre est issu, celui-ci vous propose ce qu’on
appelle des « codes web ». Ce sont des codes à six chiffres à saisir sur une page du Site
du Zéro pour être automatiquement redirigé vers un site web sans avoir à en recopier
l’adresse.

Pour utiliser les codes web, rendez-vous sur la page suivante :

http://www.siteduzero.com/codeweb

Un formulaire vous invite à rentrer votre code web. Faites un premier essai avec le code
ci-dessous :

B

�

�
	Tester le code web

Code web : 123456
Ces codes web ont deux intérêts :

– ils vous redirigent vers les sites web présentés tout au long du cours, vous permettant
ainsi d’obtenir les logiciels dans leur toute dernière version ;

– ils vous permettent de télécharger les codes sources inclus dans ce livre, ce qui vous
évitera d’avoir à recopier certains programmes un peu longs.

Ce système de redirection nous permet de tenir à jour le livre que vous avez entre les
mains sans que vous ayez besoin d’acheter systématiquement chaque nouvelle édition.
Si un site web change d’adresse, nous modifierons la redirection mais le code web à
utiliser restera le même. Si un site web disparaît, nous vous redirigerons vers une page
du Site du Zéro expliquant ce qui s’est passé et vous proposant une alternative.

En clair, c’est un moyen de nous assurer de la pérennité de cet ouvrage sans que vous
ayez à faire quoi que ce soit !

Remerciements

Nous tenons à remercier un grand nombre de personnes, sans qui ce livre n’aurait
jamais vu le jour.

Maxime Lorant

Je souhaite remercier :

– Mathieu Xhonneux, qui me supporte depuis des années et surtout lors de l’écriture
de ce cours ;

– Simple IT, pour nous permettre la publication de ce livre et pour tout le travail qu’ils
ont pu effectuer pour améliorer ce cours lors des derniers mois ;

– Nos lecteurs de la première heure, qui nous ont conseillé et aiguillé pour rendre ce
cours le plus intéressant possible ;

– La Django Software Foundation et la communauté active autour du framework : sans
eux Django n’existerait pas et vous ne seriez pas en train de lire ce cours !

iii

http://www.siteduzero.com/codeweb/123456

CHAPITRE 0. AVANT-PROPOS

– Clarisse pour son soutien, me donnant l’envie de finaliser ce cours ;
– Et enfin, merci à l’IUT de Vannes pour son excellente formation en informatique et
bonjour à tous les INSAliens, spécialement ceux de Rennes. ;-)

Mathieu Xhonneux

Je tiens à remercier deux personnes spécifiquement :

– Maxime Lorant, sans qui je n’aurais pas pu lancer ce livre et y contribuer, pour ses
blagues parfois drôles, parfois pas, pour son soutien et sa motivation pendant ces
derniers mois, et surtout pour tout ce que nous avons déjà pu réaliser au cours de
ces dernières années.

– Thibault « Tycale » Gérondal, pour son soutien, sa générosité, son hospitalité et son
génie. Il nous a initié, Maxime et moi, à Django et nous a aidé à réaliser notre premier
projet avec le framework. Sans lui, vous ne liriez pas ces lignes à l’heure actuelle.

Et bien évidemment, je remercie la communauté Django et Simple IT sans qui cette
aventure n’aurait pas été possible !

iv

Table des matières

Avant-propos i

Django, « pour les perfectionnistes sous pression » i

Qu’allez-vous apprendre en lisant ce livre ? . ii

Comment lire ce livre ? . ii

Suivez l’ordre des chapitres . ii

Pratiquez en même temps . ii

Utilisez les codes web ! . iii

Remerciements . iii

Maxime Lorant . iii

Mathieu Xhonneux . iv

I Présentation de Django 1

1 Créez vos applications web avec Django 3

Qu’est-ce qu’un framework ? . 4

Quels sont les avantages d’un framework ? 4

Quels sont les désavantages d’un framework ? 4

Qu’est-ce que Django ? . 4

Pourquoi ce succès ? . 5

Une communauté à votre service . 5

Téléchargement et installation . 6

Linux et Mac OS . 6

v

TABLE DES MATIÈRES

Windows . 7

Vérification de l’installation . 7

2 Le fonctionnement de Django 9

Un peu de théorie : l’architecture MVC . 10

La spécificité de Django : le modèle MVT . 11

Projets et applications . 12

3 Gestion d’un projet 15

Créons notre premier projet . 16

Configurez votre projet . 18

Créons notre première application . 19

4 Les bases de données et Django 23

Une base de données, c’est quoi ? . 24

Le langage SQL et les gestionnaires de base de données 25

La magie des ORM . 26

Le principe des clés étrangères . 27

II Premiers pas 29

5 Votre première page grâce aux vues 31

Hello World ! . 32

La gestion des vues . 32

Routage d’URL : comment j’accède à ma vue ? 33

Organiser proprement vos URL . 36

Comment procède-t-on ? . 36

Passer des arguments à vos vues . 38

Des réponses spéciales . 40

Simuler une page non trouvée . 40

Rediriger l’utilisateur . 40

6 Les templates 45

Lier template et vue . 46

Affichons nos variables à l’utilisateur . 48

vi

TABLE DES MATIÈRES

Affichage d’une variable . 48

Les filtres . 49

Manipulons nos données avec les tags . 50

Les conditions : {% if %} . 50

Les boucles : {% for %} . 51

Le tag {% block %} . 52

Les liens vers les vues : {% url %} . 54

Les commentaires : {% comment %} . 55

Ajoutons des fichiers statiques . 55

7 Les modèles 59

Créer un modèle . 60

Jouons avec des données . 61

Les liaisons entre modèles . 66

Les modèles dans les vues . 71

Afficher les articles du blog . 72

Afficher un article précis . 73

8 L’administration 77

Mise en place de l’administration . 78

Les modules django.contrib . 78

Accédons à cette administration ! . 78

Première prise en main . 80

Administrons nos propres modèles . 84

Personnalisons l’administration . 85

Modifier l’aspect des listes . 85

Modifier le formulaire d’édition . 89

Retour sur notre problème de slug . 93

9 Les formulaires 95

Créer un formulaire . 96

Utiliser un formulaire dans une vue . 97

Créons nos propres règles de validation . 100

Des formulaires à partir de modèles . 103

vii

TABLE DES MATIÈRES

10 La gestion des fichiers 109

Enregistrer une image . 110

Afficher une image . 112

Encore plus loin . 114

11 TP : un raccourcisseur d’URL 117

Cahier des charges . 118

Correction . 120

III Techniques avancées 125

12 Les vues génériques 127

Premiers pas avec des pages statiques . 128

Lister et afficher des données . 129

Une liste d’objets en quelques lignes avec ListView 130

Afficher un article via DetailView . 133

Agir sur les données . 135

CreateView . 135

UpdateView . 136

DeleteView . 139

13 Techniques avancées dans les modèles 143

Les requêtes complexes avec Q . 144

L’agrégation . 146

L’héritage de modèles . 148

Les modèles parents abstraits . 148

Les modèles parents classiques . 149

Les modèles proxy . 150

L’application ContentType . 151

14 Simplifions nos templates : filtres, tags et contextes 155

Préparation du terrain : architecture des filtres et tags 156

Personnaliser l’affichage de données avec nos propres filtres 157

Un premier exemple de filtre sans argument 157

Un filtre avec arguments . 160

viii

TABLE DES MATIÈRES

Les contextes de templates . 162

Un exemple maladroit : afficher la date sur toutes nos pages 163

Factorisons encore et toujours . 163

Des structures plus complexes : les custom tags 165

Première étape : la fonction de compilation 167

Passage de variable dans notre tag . 170

Les simple tags . 172

Quelques points à ne pas négliger . 173

15 Les signaux et middlewares 175

Notifiez avec les signaux . 176

Contrôlez tout avec les middlewares . 179

IV Des outils supplémentaires 185

16 Les utilisateurs 187

Commençons par la base . 188

L’utilisateur . 188

Les mots de passe . 189

Étendre le modèle User . 190

Passons aux vues . 191

La connexion . 192

La déconnexion . 194

En général . 194

Les vues génériques . 196

Se connecter . 196

Se déconnecter . 197

Se déconnecter puis se connecter . 197

Changer le mot de passe . 197

Confirmation du changement de mot de passe 197

Demande de réinitialisation du mot de passe 198

Confirmation de demande de réinitialisation du mot de passe 199

Réinitialiser le mot de passe . 199

Confirmation de la réinitialisation du mot de passe 199

ix

TABLE DES MATIÈRES

Les permissions et les groupes . 200

Les permissions . 200

Les groupes . 202

17 Les messages 203

Les bases . 204

Dans les détails . 205

18 La mise en cache 207

Cachez-vous ! . 208

Dans des fichiers . 208

Dans la mémoire . 209

Dans la base de données . 209

En utilisant Memcached . 209

Pour le développement . 210

Quand les données jouent à cache-cache . 211

Cache par vue . 211

Dans les templates . 212

La mise en cache de bas niveau . 212

19 La pagination 215

Exerçons-nous en console . 216

Utilisation concrète dans une vue . 218

20 L’internationalisation 223

Qu’est-ce que le i18n et comment s’en servir ? 224

Traduire les chaînes dans nos vues et modèles 227

Cas des modèles . 231

Traduire les chaînes dans nos templates . 232

Le tag {% trans %} . 232

Le tag {% blocktrans %} . 233

Aidez les traducteurs en laissant des notes ! 234

Sortez vos dictionnaires, place à la traduction ! 235

Génération des fichiers .po . 235

Génération des fichiers .mo . 237

x

TABLE DES MATIÈRES

Le changement de langue . 238

21 Les tests unitaires 241

Nos premiers tests . 242

Testons des vues . 245

22 Ouverture vers de nouveaux horizons : django.contrib 249

Vers l’infini et au-delà . 250

Dynamisons nos pages statiques avec flatpages ! 250

Installation du module . 250

Gestion et affichage des pages . 253

Lister les pages statiques disponibles . 254

Rendons nos données plus lisibles avec humanize 255

apnumber . 255

intcomma . 256

intword . 256

naturalday . 256

naturaltime . 257

ordinal . 257

V Annexes 259

23 Déployer votre application en production 261

Le déploiement . 262

Gardez un œil sur le projet . 264

Activer l’envoi d’e-mails . 265

Quelques options utiles. 265

Hébergeurs supportant Django . 266

24 L’utilitaire manage.py 269

Les commandes de base . 270

Prérequis . 270

Liste des commandes . 270

La gestion de la base de données . 274

Les commandes d’applications . 278

xi

TABLE DES MATIÈRES

xii

Première partie

Présentation de Django

1

Chapitre 1
Créez vos applications web avec Django

Difficulté :

S i vous lisez ceci, c’est que vous avez décidé de vous lancer dans l’apprentissage de
Django. Avant de commencer, des présentations s’imposent : Django est un frame-
work web écrit en Python, qui se veut complet tout en facilitant la création d’appli-

cations web riches.

Avant de commencer à écrire du code, nous allons tout d’abord voir dans ce chapitre ce
qu’est un framework en général, et plus particulièrement ce qu’est Django. Dans un second
temps, nous verrons comment l’installer sur votre machine, pour pouvoir commencer à
travailler ! Est-il utile de vous rappeler encore ici qu’il est nécessaire d’avoir les bases en
Python pour pouvoir commencer ce cours ?

3

CHAPITRE 1. CRÉEZ VOS APPLICATIONS WEB AVEC DJANGO

Qu’est-ce qu’un framework ?

Un framework est un ensemble d’outils qui simplifie le travail d’un développeur. Traduit
littéralement de l’anglais, un framework est un « cadre de travail ». Il apporte les bases
communes à la majorité des programmes ou des sites web. Celles-ci étant souvent
identiques (le fonctionnement d’un espace membres est commun à une très grande
majorité de sites web de nos jours), un développeur peut les réutiliser simplement et
se concentrer sur les particularités de son projet.

Il s’agit donc d’un ensemble de bibliothèques coordonnées, qui permettent à un déve-
loppeur d’éviter de réécrire plusieurs fois une même fonctionnalité, et donc d’éviter de
réinventer constamment la roue. Inutile de dire que le gain en énergie et en temps est
considérable !

Quels sont les avantages d’un framework ?

Un framework instaure en quelque sorte sa « ligne de conduite ». Tous les développeurs
Django codent de façon assez homogène (leurs codes ont le même fonctionnement,
les mêmes principes). De ce fait, lorsqu’un développeur rejoint un projet utilisant un
framework qu’il connaît déjà, il comprendra très vite ce projet et pourra se mettre
rapidement au travail.

Le fait que chaque framework possède une structure commune pour tous ses projets a
une conséquence tout aussi intéressante : en utilisant un framework, votre code sera le
plus souvent déjà organisé, propre et facilement réutilisable par autrui.

Voici d’ailleurs un grand défi des frameworks : bien que ceux-ci doivent instaurer une
structure commune, ils doivent aussi être souples et modulables, afin de pouvoir être
utilisés pour une grande variété de projets, du plus banal au plus exotique. Autrement,
leur intérêt serait grandement limité !

Quels sont les désavantages d’un framework ?

Honnêtement, il n’existe pas vraiment de désavantages à utiliser un framework. Il faut
bien évidemment prendre du temps à apprendre à en manier un, mais ce temps d’ap-
prentissage est largement récupéré par la suite, vu la vitesse de développement qui peut
parfois être décuplée. Nous pourrions éventuellement dire que certains frameworks sont
parfois un peu trop lourds, mais il incombe à son utilisateur de choisir le bon framework,
adapté à ses besoins.

Qu’est-ce que Django ?

Django est donc un framework Python destiné au web. Ce n’est pas le seul dans sa
catégorie, nous pouvons compter d’autres frameworks Python du même genre comme

4

QU’EST-CE QUE DJANGO?

web2py, TurboGears, CherryPy ou Zope. Il a cependant le mérite d’être le plus ex-
haustif, d’automatiser un bon nombre de choses et de disposer d’une très grande com-
munauté.

Django est né en 2003 dans une agence de presse qui devait développer des sites web
complets dans des laps de temps très courts (d’où l’idée du framework). En 2005,
l’agence de presse Lawrence Journal-World décide de publier Django au grand public,
le jugeant assez mature pour être réutilisé n’importe où. Trois ans plus tard, la fondation
Django Software est créée par les fondateurs du framework afin de pouvoir maintenir
celui-ci et la communauté très active qui l’entoure.

Aujourd’hui, Django est devenu très populaire et est utilisé par des sociétés du monde
entier, telles qu’Instagram, Pinterest, et même la NASA !

Pourquoi ce succès ?

Si Django est devenu très populaire, c’est notamment grâce à sa philosophie, qui a su
séduire de nombreux développeurs et chefs de projets. En effet, le framework prône le
principe du « Don’t repeat yourself », c’est-à-dire en français « Ne vous répétez pas »,
et permet le développement rapide de meilleures et plus performantes applications web,
tout en conservant un code élégant.

Django a pu appliquer sa philosophie de plusieurs manières. Par exemple, l’administra-
tion d’un site sera automatiquement générée, et celle-ci est très facilement adaptable.
L’interaction avec une base de données se fait via un ensemble d’outils spécialisés et
très pratiques. Il est donc inutile de perdre son temps à écrire directement des requêtes
destinées à la base de données, car Django le fait automatiquement. De plus, d’autres
bibliothèques complètes et bien pensées sont disponibles, comme un espace membres,
ou une bibliothèque permettant la traduction de votre application web en plusieurs
langues.

Une communauté à votre service

Évidemment, Django dispose des avantages de tous les frameworks en général. Il est
soutenu par une communauté active et expérimentée, qui publie régulièrement de nou-
velles versions du framework avec de nouvelles fonctionnalités, des corrections de bugs,
etc.

Encore un point, et non des moindres, la communauté autour de Django a rédigé au fil
des années une documentation très complète sur. Bien que celle-ci soit en anglais, elle
reste très accessible pour des francophones. Nous ne pouvons que vous conseiller de la
lire en parallèle de ce cours si vous voulez approfondir un certain sujet ou si certaines
zones d’ombre persistent.

B

�

�
	Lire la documentation

Code web : 246295
Enfin, pour gagner encore plus de temps, les utilisateurs de Django ont généralement
l’esprit open source et fournissent une liste de snippets, des portions de code réutilisables

5

http://www.siteduzero.com/codeweb/246295

CHAPITRE 1. CRÉEZ VOS APPLICATIONS WEB AVEC DJANGO

par n’importe qui. Un site est dédié à ces snippets. Si vous devez vous attaquer à une
grosse application ou à une portion de code particulièrement difficile, n’hésitez pas à
aller chercher dans les snippets, vous y trouverez souvent votre bonheur !

B

�

�
	Voir le site

Code web : 540651

Téléchargement et installation

Maintenant que nous avons vu les avantages qu’apporte Django, il est temps de passer
à son installation. Tout d’abord, assurez-vous que vous disposez bien d’une version
de Python supérieure ou égale à la 2.6.5 pour la branche 2.6.x ou à la 2.7.3
pour la branche 2.7.x et supérieure. Pour plus d’informations à ce sujet, vous pouvez
vous reporter au cours sur le Python du Site du Zéro.

Django 1.5 est également compatible avec Python 3, mais de façon expéri-
mentale : quelques modules, comme la connexion avec MySQL sont indispo-
nibles, faute de bibliothèque compatible Python 3. . . Nous vous recomman-
dons donc d’attendre Django 1.6 avant de sauter vers Python 3 pour vos
applications web. Par ailleurs, le support de Python 2.5 est abandonné depuis
Django 1.5. Nous vous conseillons dès maintenant d’utiliser Python 2.7.3, qui
est bien plus stable et à jour.

Il est également plus prudent de supprimer toutes les anciennes installations de Django,
si vous en avez déjà. Il peut y avoir des conflits entre les versions, notamment lors de
la gestion des projets. Il est essentiel de n’avoir que Django 1.5 sur votre machine,
à part si vous avez déjà des applications en production sur des versions antérieures.
Dans ce cas, il est conseillé soit de porter toutes vos applications pour Django 1.5, soit
d’exécuter vos deux projets avec deux versions de Django bien indépendantes.

Linux et Mac OS

Sous Linux et Mac OS, l’installation de Django peut s’effectuer de deux manières dif-
férentes, soit en utilisant le gestionnaire de paquets de votre distribution (ou MacPorts
pour Mac OS), soit en installant Django manuellement, via une archive officielle. Nous
ne couvrirons pas la première solution, celle-ci dépendant beaucoup trop de votre dis-
tribution. Si toutefois vous choisissez cette solution, faites attention à la version de
Django disponible dans les dépôts. Il se peut que ce ne soit pas toujours la dernière
version qui soit disponible, donc pas à jour et incompatible avec ce cours.

Si vous ne passez pas par les dépôts, le plus simple reste de télécharger une archive.

B

�

�
	Télécharger l’archive

Code web : 970872
Il suffit ensuite de l’extraire et de l’installer, en effectuant les commandes suivantes

6

http://www.siteduzero.com/codeweb/540651
http://www.siteduzero.com/codeweb/970872

TÉLÉCHARGEMENT ET INSTALLATION

dans une console :

tar xzvf Django -1.5. tar.gz
cd Django -1.5
sudo python setup.py install

Windows

Contrairement aux environnements UNIX, l’installation de Django sous Windows re-
quiert quelques manipulations supplémentaires. Téléchargez l’archive de Django et
extrayez-la.

B

�

�
	Télécharger l’archive

Code web : 970872
Avant de continuer, nous allons devoir modifier quelques variables d’environnement,
afin de permettre l’installation du framework. Pour cela (sous Windows 7) :

1. Rendez-vous dans les informations générales du système (via le raccourci
�� ��Windows

+
�� ��Pause) ;

2. Cliquez sur Paramètres système avancés, dans le menu de gauche ;

3. Une fois la fenêtre ouverte, cliquez sur Variables d’environnement ;

4. Cherchez la variable système (deuxième liste) Path et ajoutez ceci en fin de ligne
(faites attention à votre version de Python) : ;C:\Python27\;C:\Python27\Lib
\site-packages\django\bin\. Respectez bien le point-virgule permettant de
séparer le répertoire de ceux déjà présents, comme indiqué à la figure 1.1.

Validez, puis quittez. Nous pouvons désormais installer Django via la console Windows
(
�� ��Windows +

�� ��R puis la commande cmd) :

cd C:\Users\<nom_d ’utilisateur >\ Downloads\django1 .5 # A adapter
à votre répertoire de téléchargement

python setup.py install

Les fichiers sont ensuite copiés dans votre dossier d’installation Python (ici C:\Python27).

Vérification de l’installation

Dès que vous avez terminé l’installation de Django, lancez une nouvelle console Win-
dows, puis lancez l’interpréteur Python (via la commande python) et tapez les deux
lignes suivantes :

1 >>> import django
2 >>> print django.get_version ()
3 1.5 # <- Résultat attendu

7

http://www.siteduzero.com/codeweb/970872

CHAPITRE 1. CRÉEZ VOS APPLICATIONS WEB AVEC DJANGO

Figure 1.1 – Édition du Path sous Windows 7

Si vous obtenez également 1.5 comme réponse, félicitations, vous avez correctement
installé Django !

Il se peut que vous obteniez un numéro de version légèrement différent (du
type 1.5.1). En réalité, Django est régulièrement mis à jour de façon mineure,
afin de résoudre des failles de sécurité ou des bugs. Tenez-vous au courant
de ces mises à jour, et appliquez-les dès que possible.

Par la suite, nous utiliserons SQLite, qui est simple et déjà inclus dans les bibliothèques
de base de Python. Si vous souhaitez utiliser un autre système de gestion de base de
données, n’oubliez pas d’installer les outils nécessaires (dépendances, packages, etc.).

En résumé

– Un framework (« cadre de travail » en français) est un ensemble d’outils qui simplifie
le travail d’un développeur.

– Un framework est destiné à des développeurs, et non à des novices. Un framework
nécessite un temps d’apprentissage avant de pouvoir être pleinement utilisé.

– Django est un framework web pour le langage Python très populaire, utilisé par des
entreprises : Mozilla, Instagram ou encore la NASA l’ont adopté !

8

Chapitre 2
Le fonctionnement de Django

Difficulté :

A ttaquons-nous au vif du sujet ! Dans ce chapitre, théorique mais fondamental, nous
allons voir comment sont construits la plupart des frameworks grâce au modèle MVC,
nous aborderons ensuite les spécificités du fonctionnement de Django et comment

les éléments d’une application classique Django s’articulent autour du modèle MVT, que
nous introduirons également. En dernier lieu, nous expliquerons le système de projets et
d’applications, propre à Django, qui permet une séparation nette, propre et précise du code.

Au terme de ce chapitre, vous aurez une vue globale sur le fonctionnement de Django, ce qui
vous sera grandement utile lorsque vous commencerez à créer vos premières applications.

9

CHAPITRE 2. LE FONCTIONNEMENT DE DJANGO

Un peu de théorie : l’architecture MVC

Lorsque nous parlons de frameworks qui fournissent une interface graphique à l’utili-
sateur (soit une page web, comme ici avec Django, soit l’interface d’une application
graphique classique, comme celle de votre traitement de texte par exemple), nous par-
lons souvent de l’architecture MVC. Il s’agit d’un modèle distinguant plusieurs rôles
précis d’une application, qui doivent être accomplis. Comme son nom l’indique, l’archi-
tecture (ou « patron »)Modèle-Vue-Contrôleur est composé de trois entités distinctes,
chacune ayant son propre rôle à remplir.

Tout d’abord, le modèle représente une information enregistrée quelque part, le plus
souvent dans une base de données. Il permet d’accéder à l’information, de la modifier,
d’en ajouter une nouvelle, de vérifier que celle-ci correspond bien aux critères (on
parle d’intégrité de l’information), de la mettre à jour, etc. Il s’agit d’une interface
supplémentaire entre votre code et la base de données, mais qui simplifie grandement
les choses, comme nous le verrons par la suite.

Ensuite la vue qui est, comme son nom l’indique, la visualisation de l’information.
C’est la seule chose que l’utilisateur peut voir. Non seulement elle sert à présenter
une donnée, mais elle permet aussi de recueillir une éventuelle action de l’utilisateur
(un clic sur un lien, ou la soumission d’un formulaire par exemple). Typiquement, un
exemple de vue est une page web, ni plus, ni moins.

Finalement, le contrôleur prend en charge tous les événements de l’utilisateur (accès
à une page, soumission d’un formulaire, etc.). Il se charge, en fonction de la requête
de l’utilisateur, de récupérer les données voulues dans les modèles. Après un éventuel
traitement sur ces données, il transmet ces données à la vue, afin qu’elle s’occupe de
les afficher. Lors de l’appel d’une page, c’est le contrôleur qui est chargé en premier,
afin de savoir ce qu’il est nécessaire d’afficher.

La figure 2.1 schématise l’architecture MVC.

Figure 2.1 – Schéma de l’architecture MVC

10

LA SPÉCIFICITÉ DE DJANGO : LE MODÈLE MVT

La spécificité de Django : le modèle MVT

L’architecture utilisée par Django diffère légèrement de l’architecture MVC classique.
En effet, la « magie » de Django réside dans le fait qu’il gère lui-même la partie contrô-
leur (gestion des requêtes du client, des droits sur les actions. . .). Ainsi, nous parlons
plutôt de framework utilisant l’architecture MVT : Modèle-Vue-Template.

Cette architecture reprend les définitions de modèle et de vue que nous avons vues, et en
introduit une nouvelle : le template (voir figure 6.1). Un template est un fichier HTML,
aussi appelé en français « gabarit ». Il sera récupéré par la vue et envoyé au visiteur ;
cependant, avant d’être envoyé, il sera analysé et exécuté par le framework, comme
s’il s’agissait d’un fichier avec du code. Django fournit un moteur de templates très
utile qui permet, dans le code HTML, d’afficher des variables, d’utiliser des structures
conditionnelles (if/else) ou encore des boucles (for), etc.

Figure 2.2 – Schéma d’exécution d’une requête

Concrètement, lorsque l’internaute appelle une page de votre site réalisé avec Django,
le framework se charge, via les règles de routage URL définies, d’exécuter la vue corres-
pondante. Cette dernière récupère les données des modèles et génère un rendu HTML
à partir du template et de ces données. Une fois la page générée, l’appel fait chemin
arrière, et le serveur renvoie le résultat au navigateur de l’internaute.

On distingue les quatre parties qu’un développeur doit gérer :

– Le routage des requêtes, en fonction de l’URL ;
– La représentation des données dans l’application, avec leur gestion (ajout, édition,
suppression. . .), c’est-à-dire les modèles ;

– L’affichage de ces données et de toute autre information au format HTML, c’est-à-
dire les templates ;

– Enfin le lien entre les deux derniers points : la vue qui récupère les données et génère
le template selon celles-ci.

On en revient donc au modèle MVT. Le développeur se doit de fournir le modèle, la
vue et le template. Une fois cela fait, il suffit juste d’assigner la vue à une URL précise,

11

CHAPITRE 2. LE FONCTIONNEMENT DE DJANGO

et la page est accessible.

Si le template est un fichier HTML classique, un modèle en revanche sera écrit sous la
forme d’une classe où chaque attribut de celle-ci correspondra à un champ dans la base
de données. Django se chargera ensuite de créer la table correspondante dans la base
de données, et de faire la liaison entre la base de données et les objets de votre classe.
Non seulement il n’y a plus besoin d’écrire de requêtes pour interagir avec la base de
données, mais en plus le framework propose la représentation de chaque entrée de la
table sous forme d’une instance de la classe qui a été écrite. Il suffit donc d’accéder aux
attributs de la classe pour accéder aux éléments dans la table et pouvoir les modifier,
ce qui est très pratique !

Enfin, une vue est une simple fonction, qui prend comme paramètres des informations
sur la requête (s’il s’agit d’une requête GET ou POST par exemple), et les paramètres
qui ont été donnés dans l’URL. Par exemple, si l’identifiant ou le nom d’un article du
blog a été donné dans l’URL crepes-bretonnes.com/blog/faire-de-bonnes-crepes,
la vue récupérera faire-de-bonnes-crepes comme titre et cherchera dans la base de
données l’article correspondant à afficher. Suite à quoi la vue générera le template avec
le bon article et le renverra à l’utilisateur.

Projets et applications

En plus de l’architecture MVT, Django introduit le développement d’un site sous forme
de projet. Chaque site web conçu avec Django est considéré comme un projet, composé
de plusieurs applications. Une application consiste en un dossier contenant plusieurs
fichiers de code, chacun étant relatif à une tâche du modèle MVT que nous avons vu.
En effet, chaque bloc du site web est isolé dans un dossier avec ses vues, ses modèles
et ses schémas d’URL.

Lors de la conception de votre site, vous allez devoir penser aux applications que vous
souhaitez développer. Voici quelques exemples d’applications :

– Un module d’actualités ;
– Un forum ;
– Un système de contact ;
– Une galerie de photos ;
– Un système de dons.

Ce principe de séparation du projet en plusieurs applications possède deux avantages
principaux :

– Le code est beaucoup plus structuré. Les modèles et templates d’une application ne
seront que rarement ou jamais utilisés dans une autre, nous gardons donc une sépa-
ration nette entre les différentes applications, ce qui évite de s’emmêler les pinceaux !

– Une application correctement conçue pourra être réutilisée dans d’autres projets très
simplement, par un simple copier/coller, comme le montre la figure 2.3.

Ici, le développement du système d’articles sera fait une fois uniquement. Pour le se-
cond site, une légère retouche des templates suffira. Ce système permet de voir le site

12

PROJETS ET APPLICATIONS

Figure 2.3 – Organisation d’un projet Django et réutilisation d’une application

web comme des boîtes que nous agençons ensemble, accélérant considérablement le
développement pour les projets qui suivent.

En résumé

– Django respecte l’architecture MVT, directement inspirée du très populaire modèle
MVC ;

– Django gère de façon autonome la réception des requêtes et l’envoi des réponses au
client (partie contrôleur) ;

– Un projet est divisé en plusieurs applications, ayant chacune un ensemble de vues,
de modèles et de schémas d’URL ;

– Si elles sont bien conçues, ces applications sont réutilisables dans d’autres projets,
puisque chaque application est indépendante.

13

CHAPITRE 2. LE FONCTIONNEMENT DE DJANGO

14

Chapitre 3
Gestion d’un projet

Difficulté :

D jango propose un outil en ligne de commandes très utile qui permet énormément de
choses :

– Création de projets et applications ;
– Création des tables dans la base de données selon les modèles de l’application ;
– Lancement du serveur web de développement ;
– Etc.

Nous verrons dans ce chapitre comment utiliser cet outil, la structure d’un projet Django
classique, comment créer ses projets et applications, et leur configuration.

15

CHAPITRE 3. GESTION D’UN PROJET

Créons notre premier projet

L’outil de gestion fourni avec Django se nomme django-admin.py et il n’est accessible
qu’en ligne de commandes. Pour ce faire, munissez-vous d’une console MS-DOS sous
Windows, ou d’un terminal sous Linux et Mac OS X.

Attention ! La console système n’est pas l’interpréteur Python ! Dans la
console système, vous pouvez exécuter des commandes système comme
l’ajout de dossier, de fichier, tandis que dans l’interpréteur Python vous écri-
vez du code Python.

Sous Windows, allez dans le menu Démarrer > Exécuter et tapez dans l’invite de
commande cmd. Une console s’ouvre, déplacez-vous dans le dossier dans lequel vous
souhaitez créer votre projet grâce à la commande cd, suivie d’un chemin. Exemple :

cd C:\Mes Documents\Utilisateur\

Sous Mac OS X et Linux, lancez tout simplement l’application Terminal (elle peut
parfois également être nommée Console sous Linux), et déplacez-vous dans le dossier
dans lequel vous souhaitez créer votre projet, également à l’aide de la commande cd.
Exemple :

cd /home/mathx/Projets/

Tout au long du tutoriel, nous utiliserons un blog sur les bonnes crêpes bretonnes
comme exemple. Ainsi, appelons notre projet crepes_bretonnes (seuls les caractères
alphanumériques et underscores sont autorisés pour le nom du projet) et créons-le grâce
à la commande suivante :

django -admin.py startproject crepes_bretonnes

Un nouveau dossier nommé crepes_bretonnes est apparu et possède la structure
suivante :

1 crepes_bretonnes/
2 manage.py
3 crepes_bretonnes/
4 __init__.py
5 settings.py
6 urls.py
7 wsgi.py

Il s’agit de votre projet.

Dans le dossier principal crepes_bretonnes, nous retrouvons deux éléments : un fi-
chier manage.py et un autre sous-dossier nommé également crepes_bretonnes. Créez
dans le dossier principal un dossier nommé templates, lequel contiendra vos templates
HTML.

16

CRÉONS NOTRE PREMIER PROJET

Sachez toutefois qu’il est possible d’intégrer un dossier templates au sein de chaque
application : ceci permet une meilleure modularité et un partage d’applications entre
projets plus facile. En théorie, il est recommandé d’agir tel quel, afin d’avoir tout le
code concernant une application au même endroit. En effet, Django cherche en priorité
le template demandé dans le dossier templates des applications installées, puis après
dans ceux listés dans une variable du fichier de configuration, TEMPLATE_DIRS, que
l’on va voir juste après. De plus, pour éviter les collisions il est conseillé de garder la
structure suivante : <APP>/templates/<APP>/template.html, où <APP> est le nom de
votre application.

Le dossier templates à la racine de votre projet ne contiendra que les templates spéci-
fiques à votre projet, qui ne peuvent être rangés autre part. Dans ce cours nous allons,
par simplicité pédagogique, tout placer dans le dossier templates à la racine. Pensez
cependant à prendre la bonne habitude de bien séparer vos dossiers templates dans de
vrais projets !

Le sous-dossier contient quatre fichiers Python, à savoir settings.py, urls.py, wsgi.py
et __init__.py. Ne touchez surtout pas à ces deux derniers fichiers, ils n’ont pas
pour but d’être modifiés ! Les deux autres fichiers ont des noms plutôt éloquents : set‌
tings.py contiendra la configuration de votre projet, tandis que urls.py rassemblera
toutes les URL de votre site web et la liste des fonctions à appeler pour chaque URL.
Nous reviendrons sur ces deux fichiers plus tard.

Ensuite, le fichier manage.py est en quelque sorte un raccourci local de la commande
django-admin.py qui prend en charge la configuration de votre projet. Vous pouvez
désormais oublier la commande django-admin.py, elle ne sert en réalité qu’à créer des
projets, tout le reste se fait via manage.py. Bien évidemment, n’éditez pas ce fichier
non plus.

Votre projet étant créé, pour vous assurer que tout a été correctement effectué jusqu’à
maintenant, vous pouvez lancer le serveur de développement via la commande python
manage.py runserver :

$ python manage.py runserver
Validating models ...

0 errors found
March 04, 2013 - 20:31:54
Django version 1.5, using settings ’crepes_bretonnes.settings ’
Development server is running at http ://127.0.0.1:8000/
Quit the server with CTRL -BREAK.

Cette console vous donnera des informations, des logs (quelle page a été accédée et par
qui) et les exceptions de Python lancées en cas d’erreur lors du développement. Par
défaut, l’accès au site de développement se fait via l’adresse http://localhost:8000.
Vous devriez obtenir quelque chose comme la figure 3.1 dans votre navigateur.

Si ce n’est pas le cas, assurez-vous d’avoir bien respecté toutes les étapes précédentes !

Au passage, manage.py propose bien d’autres sous-commandes, autres que runserver.
Une petite liste est fournie avec la sous-commande help :

17

CHAPITRE 3. GESTION D’UN PROJET

Figure 3.1 – Votre première page Django

python manage.py help

Toutes ces commandes sont expliquées dans une annexe, donc nous vous invitons à la
survoler de temps en temps, au fur et à mesure que vous avancez dans ce cours, et nous
reviendrons sur certaines d’entre elles dans certains chapitres. Il s’agit là d’un outil
très puissant qu’il ne faut surtout pas sous-estimer. Le développeur Django y a recours
quasiment en permanence, d’où l’intérêt de savoir le manier correctement.

Configurez votre projet

Avant de commencer à écrire des applications Django, configurons le projet que nous
venons de créer. Ouvrez le fichier settings.py dont nous avons parlé tout à l’heure. Il
s’agit d’un simple fichier Python avec une liste de variables que vous pouvez modifier
à votre guise. Voici les plus importantes :

1 DEBUG = True
2 TEMPLATE_DEBUG = DEBUG

Ces deux variables permettent d’indiquer si votre site web est en mode « debug » ou
pas. Le mode de débogage affiche des informations pour déboguer vos applications en
cas d’erreur. Ces informations affichées peuvent contenir des données sensibles de votre
fichier de configuration. Ne mettez donc jamais DEBUG = True en production !

Le tuple ADMINS, qui est par défaut vide, est censé contenir quelques informations à
propos des gestionnaires du site (nom et adresse e-mail). L’adresse e-mail servira no-
tamment à envoyer les erreurs rencontrées par les visiteurs de votre site en production.
En voici un exemple :

1 ADMINS = (
2 ('Maxime Lorant ', 'maxime@crepes -bretonnes.com'),
3 ('Mathieu Xhonneux ', 'mathieu@crepes -bretonnes.com'),
4)

La configuration de la base de données se fait dans le dictionnaire DATABASES. Nous
conseillons pour le développement local l’utilisation d’une base de données SQLite.

18

CRÉONS NOTRE PREMIÈRE APPLICATION

L’avantage de SQLite comme gestionnaire de base de données pour le développement
est simple : il ne s’agit que d’un simple fichier. Il n’y a donc pas besoin d’installer un
service à part comme MySQL ; Python et Django se chargent de tout. Si vous n’avez
aucune idée de ce qu’est réellement une base de données SQLite, n’ayez aucune crainte,
le prochain chapitre vous expliquera en détail en quoi elles consistent et comment elles
fonctionnent.

Voici la configuration nécessaire pour l’utilisation de SQLite :

1 DATABASES = {
2 'default ': {
3 'ENGINE ': 'django.db.backends.sqlite3 ',
4 'NAME': 'database.sql',
5 'USER': '',
6 'PASSWORD ': '',
7 'HOST': '',
8 'PORT': '',
9 }

10 }

Modifiez le fuseau horaire et la langue de l’administration :

1 TIME_ZONE = 'Europe/Paris'
2 LANGUAGE_CODE = 'fr -FR'

TEMPLATE_DIRS est un simple tuple contenant les listes des dossiers vers les templates.
Nous avons créé un dossier templates à la racine de notre projet tout à l’heure,
incluons-le donc ici :

1 TEMPLATE_DIRS = (
2 "/home/crepes/crepes_bretonnes/templates/"
3)

Finalement, pour des raisons pratiques qui seront explicitées par la suite, ajoutons une
option qui permet de compléter automatiquement les URL par un slash (« / ») à la
fin de celles-ci, si celui-ci n’est pas déjà présent. Vous en comprendrez l’utilité lorsque
nous aborderons le routage d’URL :

1 APPEND_SLASH = True # Ajoute un slash en fin d'URL

Voilà ! Les variables les plus importantes ont été expliquées. Pour que ce ne soit pas
indigeste, nous n’avons pas tout traité, il en reste en effet beaucoup d’autres. Nous
reviendrons sur certains paramètres plus tard. En attendant, si une variable vous in-
trigue, n’hésitez pas à lire le commentaire (bien qu’en anglais) à côté de la déclaration
et à vous référer à la documentation en ligne.

Créons notre première application

Comme nous l’avons expliqué précédemment, un projet se compose de plusieurs ap-
plications, chacune ayant un but bien précis (système d’actualités, galerie photos. . .).

19

CHAPITRE 3. GESTION D’UN PROJET

Pour créer une application dans un projet, le fonctionnement est similaire à la création
d’un projet : il suffit d’utiliser la commande manage.py avec startapp, à l’intérieur de
votre projet. Pour notre site sur les crêpes bretonnes, créons un blog pour publier nos
nouvelles recettes :

python manage.py startapp blog

Comme pour startproject, startapp crée un dossier avec plusieurs fichiers à l’inté-
rieur. La structure de notre projet ressemble à ceci :

1 crepes_bretonnes/
2 manage.py
3 crepes_bretonnes/
4 __init__.py
5 settings.py
6 urls.py
7 wsgi.py
8 blog/
9 __init__.py

10 models.py
11 tests.py
12 views.py

Les noms des fichiers sont relativement évidents :

– models.py contiendra vos modèles ;
– tests.py permet la création de tests unitaires (un chapitre y est consacré dans la
quatrième partie de ce cours) ;

– views.py contiendra toutes les vues de votre application.

À partir de maintenant, nous ne parlerons plus des fichiers __init__.py, qui
ne sont là que pour indiquer que notre dossier est un module Python. C’est
une spécificité de Python qui ne concerne pas directement Django.

Dernière petite chose, il faut ajouter cette application au projet. Pour que Django
considère le sous-dossier blog comme une application, il faut donc l’ajouter dans la
configuration.

Retournez dans settings.py, et cherchez la variable INSTALLED_APPS. Tout en conser-
vant les autres applications installées, ajoutez une chaîne de caractères avec le nom de
votre application. Au passage, décommentez l’application django.contrib.admin, il
s’agit de l’application qui génère automatiquement l’administration et dont nous nous
occuperons plus tard.

Votre variable devrait ressembler à quelque chose comme ceci :

1 INSTALLED_APPS = (
2 'django.contrib.auth',
3 'django.contrib.contenttypes ',
4 'django.contrib.sessions ',
5 'django.contrib.sites',

20

CRÉONS NOTRE PREMIÈRE APPLICATION

6 'django.contrib.messages ',
7 'django.contrib.staticfiles ',
8 'django.contrib.admin',
9 'blog',

10)

En résumé

– L’administration de projet s’effectue via la commande python manage.py. Tout par-
ticulièrement, la création d’un projet se fait via la commande django-admin.py
startproject mon_projet.

– À la création du projet, Django déploie un ensemble de fichiers, facilitant à la fois la
structuration du projet et sa configuration.

– Pour tester notre projet, il est possible de lancer un serveur de test, via la commande
python manage.py runserver, dans le dossier de notre projet. Ce serveur de test
ne doit pas être utilisé en production.

– Il est nécessaire de modifier le settings.py, afin de configurer le projet selon nos
besoins. Ce fichier ne doit pas être partagé avec les autres membres ou la production,
puisqu’il contient des données dépendant de votre installation, comme la connexion
à la base de données.

21

CHAPITRE 3. GESTION D’UN PROJET

22

Chapitre 4
Les bases de données et Django

Difficulté :

P our que vous puissiez enregistrer les données de vos visiteurs, l’utilisation d’une base
de données s’impose. Nous allons dans ce chapitre expliquer le fonctionnement d’une
base de données, le principe des requêtes SQL et l’interface que Django propose

entre les vues et les données enregistrées. À la fin de ce chapitre, vous aurez assez de
connaissances théoriques pour comprendre par la suite le fonctionnement des modèles.

23

CHAPITRE 4. LES BASES DE DONNÉES ET DJANGO

Une base de données, c’est quoi ?

Imaginez que vous souhaitiez classer sur papier la liste des films que vous possédez à
la maison. Un film a plusieurs caractéristiques : le titre, le résumé, le réalisateur, les
acteurs principaux, le genre, l’année de sortie, une appréciation, etc. Il est important
que votre méthode de classement permette de différencier très proprement ces carac-
téristiques. De même, vous devez être sûrs que les caractéristiques que vous écrivez
sont correctes et homogènes. Si vous écrivez la date de sortie une fois en utilisant des
chiffres, puis une autre fois en utilisant des lettres, vous perdez en lisibilité et risquez
de compliquer les choses.

Il existe plusieurs méthodes de classement pour trier nos films, mais la plus simple
et la plus efficace (et à laquelle vous avez sûrement dû penser) est tout simplement
un tableau ! Pour classer nos films, les colonnes du tableau renseignent les différentes
caractéristiques qu’un film peut avoir, tandis que les lignes représentent toutes les
caractéristiques d’un même film. Par exemple :

Titre Réalisateur Année de sortie Note (sur 20)
Pulp Fiction Quentin Tarantino 1994 20
Inglorious Basterds Quentin Tarantino 2009 18
Holy Grail Monty Python 1975 19
Fight Club David Fincher 1999 20
Life of Brian Monty Python 1979 17

Le classement par tableau est très pratique et simple à comprendre. Les bases de
données s’appuient sur cette méthode de tri pour enregistrer et classer les informations
que vous spécifierez.

Une base de données peut contenir plusieurs tableaux, chacun servant à enregistrer un
certain type d’élément. Par exemple, dans votre base, vous pourriez avoir un tableau
qui recensera vos utilisateurs, un autre pour les articles, encore un autre pour les
commentaires, etc.

En anglais, « tableau » est traduit par « table ». Cependant, beaucoup de
ressources francophones utilisent pourtant le mot anglais « table » pour dési-
gner un tableau, à cause de la prépondérance de l’anglais dans l’informatique.
À partir de maintenant, nous utiliserons également le mot « table » pour dé-
signer un tableau dans une base de données.

Nous avons évoqué un autre point important de ces bases de données, avec l’exemple
de la date de sortie. Il faut en effet que toutes les données dans une colonne soient
homogènes. Autrement dit, elles doivent avoir un même type de données : entier, chaîne
de caractères, texte, booléen, date. . . Si vous enregistrez un texte dans la colonne Note,
votre code vous renverra une erreur. Dès lors, chaque fois que vous irez chercher des
données dans une table, vous serez sûrs du type des variables que vous obtiendrez.

24

LE LANGAGE SQL ET LES GESTIONNAIRES DE BASE DE DONNÉES

Le langage SQL et les gestionnaires de base de données

Il existe plusieurs programmes qui s’occupent de gérer des bases de données. Nous les
appelons, tout naturellement, des gestionnaires de bases de données (ou « SGBD » pour
« systèmes de gestion de bases de données »). Ces derniers s’occupent de tout : création
de nouvelles tables, ajout de nouvelles entrées dans une table, mise à jour des données,
renvoi des entrées déjà enregistrées, etc. Il y a énormément de SGBD, chacun avec des
caractéristiques particulières. Néanmoins, ils se divisent en deux grandes catégories :
les bases de données SQL et les bases de données non-SQL. Nous allons nous intéresser
à la première catégorie (celle que Django utilise).

Les gestionnaires de bases de données SQL sont les plus populaires et les plus utilisés
pour le moment. Ceux-ci reprennent l’utilisation du classement par tableau tel que nous
l’avons vu. L’acronyme « SQL » signifie « Structured Query Language », ou en français
« langage de requêtes structurées ». En effet, lorsque vous souhaitez demander au SGBD
toutes les entrées d’une table, vous devez communiquer avec le serveur (le programme
qui sert les données) dans un langage qu’il comprend. Ainsi, si pour commander un
café vous devez parler en français, pour demander les données au gestionnaire vous
devez parler en SQL.

Voici un simple exemple de requête SQL qui renvoie toutes les entrées de la table films
dont le réalisateur doit être Quentin Tarantino et qui sont triées par date de sortie :

1 SELECT titre , annee_sortie , note FROM films WHERE realisateur="
Quentin Tarantino" ORDER BY annee_sortie

On a déjà vu plus simple, mais voilà comment communiquent un serveur SQL et un
client. Il existe bien d’autres commandes (une pour chaque type de requête : sélection,
mise à jour, suppression. . .) et chaque commande possède ses paramètres.

Heureusement, tous les SGBD SQL parlent à peu près le même SQL, c’est-à-dire qu’une
requête utilisée avec un gestionnaire fonctionnera également avec un autre. Néanmoins,
ce point est assez théorique, car même si les requêtes assez basiques marchent à peu
près partout, les requêtes plus pointues et avancées commencent à diverger selon le
SGBD, et si un jour vous devez changer de gestionnaire, nul doute que vous devrez
réécrire certaines requêtes. Django a une solution pour ce genre de situations, nous
verrons cela par la suite.

Voici quelques gestionnaires SQL bien connus (dont vous avez sûrement déjà dû voir
le nom quelque part) :

– MySQL : gratuit, probablement le plus connu et le plus utilisé à travers le monde ;
– PostgreSQL : gratuit, moins connu que MySQL, mais possède quelques fonctionna-

lités de plus que ce dernier ;
– Oracle Database : généralement utilisé dans de grandes entreprises, une version gra-
tuite existe, mais est très limitée ;

– Microsoft SQL Server : payant, développé par Microsoft ;
– SQLite : très léger, gratuit, et très simple à installer (en réalité, il n’y a rien à
installer).

25

CHAPITRE 4. LES BASES DE DONNÉES ET DJANGO

Lors de la configuration de votre projet Django dans le chapitre précédent, nous vous
avons conseillé d’utiliser SQLite. Pourquoi ? Car contrairement aux autres SGBD qui
ont besoin d’un serveur lancé en permanence pour traiter les données, une base de
données SQLite consiste en un simple fichier. C’est la bibliothèque Python (nommée
sqlite3) qui se chargera de modifier et renvoyer les données de la base. C’est très utile
en développement, car il n’y a rien à installer, mais en production mieux vaut utiliser
un SGBD plus performant comme MySQL.

La magie des ORM

Apprendre le langage SQL et écrire ses propres requêtes est quelque chose d’assez diffi-
cile et contraignant lorsque nous débutons. Cela prend beaucoup de temps et est assez
rébarbatif. Heureusement, Django propose un système pour bénéficier des avantages
d’une base de données SQL sans devoir écrire ne serait-ce qu’une seule requête SQL !

Ce type de système s’appelle ORM pour « object-relationnal mapping ». Derrière ce
nom un peu barbare se cache un fonctionnement simple et très utile. Lorsque vous créez
un modèle dans votre application Django, le framework va automatiquement créer une
table adaptée dans la base de données qui permettra d’enregistrer les données relatives
au modèle.

Sans entrer dans les détails (nous verrons cela après), voici un modèle simple qui
reviendra par la suite :

1 class Article(models.Model):
2 titre = models.CharField(max_length=100)
3 auteur = models.CharField(max_length=42)
4 contenu = models.TextField(null=True)
5 date = models.DateTimeField(auto_now_add=True , auto_now=

False , verbose_name="Date de parution")

À partir de ce modèle, Django va créer une table blog_article (« blog » étant le
nom de l’application dans laquelle le modèle est ajouté) dont les champs seront titre,
auteur, contenu et date. Chaque champ a son propre type (tel que défini dans le
modèle), et ses propres paramètres. Tout cela se fait, encore une fois, sans écrire la
moindre requête SQL.

La manipulation de données est tout aussi simple bien évidemment. Le code suivant. . .

1 Article(titre="Bonjour", auteur="Maxime", contenu="Salut").save
()

. . . créera une nouvelle entrée dans la base de données. Notez la relation qui se crée :
chaque instance du modèle Article qui se crée correspond à une entrée dans la table
SQL. Toute manipulation des données dans la base se fait depuis des objets Python, ce
qui est bien plus intuitif et simple.

De la même façon, il est possible d’obtenir toutes les entrées de la table. Ainsi le code
suivant. . .

26

LE PRINCIPE DES CLÉS ÉTRANGÈRES

1 Article.objects.all()

. . . renverra des instances d’Article, une pour chaque entrée dans la table, comme le
schématise la figure 4.1.

Figure 4.1 – Fonctionnement de l’ORM de Django

Pour conclure, l’ORM est un système très flexible de Django qui s’insère parfaitement
bien dans l’architecture MVT que nous avons décrite précédemment.

Le principe des clés étrangères

Pour terminer ce chapitre, nous allons aborder une dernière notion théorique relative
aux bases de données SQL, il s’agit des clés étrangères (ou Foreign Keys en anglais).

Reprenons notre exemple de tout à l’heure : nous avons une table qui recense plusieurs
films. Imaginons maintenant que nous souhaitions ajouter des données supplémentaires,
qui ne concernent pas les films mais les réalisateurs. Nous voudrions par exemple ajouter
le pays d’origine et la date de naissance des réalisateurs. Étant donné que certains réa-
lisateurs reviennent plusieurs fois, il serait redondant d’ajouter les caractéristiques des
réalisateurs dans les caractéristiques des films. La bonne solution ? Créer une nouvelle
table qui recensera les réalisateurs et ajouter un lien entre les films et les réalisateurs.

Lorsque Django crée une nouvelle table depuis un modèle, il va ajouter un autre champ
qui n’est pas dans les attributs de la classe. Il s’agit d’un champ tout simple nommé
ID (pour « identifiant », synonyme ici de « clé »), qui contiendra un certain nombre
unique à l’entrée, et qui va croissant au fil des entrées. Ainsi, le premier réalisateur
ajouté aura l’identifiant 1, le deuxième l’identifiant 2, etc.

Voici donc à quoi ressemblerait notre table des réalisateurs :

ID Nom Pays d’origine Date de naissance
1 Quentin Tarantino USA 1963
2 David Fincher USA 1962
3 Monty Python Grande Bretagne 1969

Jusqu’ici, rien de spécial à part la nouvelle colonne ID introduite précédemment. En
revanche, dans la table recensant les films, une colonne a été modifiée :

27

CHAPITRE 4. LES BASES DE DONNÉES ET DJANGO

Titre Réalisateur Année de sortie Note (sur 20)
Pulp Fiction 1 1994 20
Inglorious Basterds 1 2009 18
Holy Grail 3 1975 19
Fight Club 2 1999 20
Life of Brian 3 1979 17

Désormais, les noms des réalisateurs sont remplacés par des nombres. Ceux-ci cor-
respondent aux identifiants de la table des réalisateurs. Si nous souhaitons obtenir
le réalisateur du film Fight Club, il faut aller regarder dans la table réalisateurs et
sélectionner l’entrée ayant l’identifiant 2. Nous pouvons dès lors regarder le nom du réa-
lisateur : nous obtenons bien à nouveau David Fincher, et les données supplémentaires
(date de naissance et pays d’origine) sont également accessibles.

Cette méthode de clé étrangère (car la clé vient d’une autre table) permet de créer
simplement des liens entre des entrées dans différents tableaux. L’ORM de Django gère
parfaitement cette méthode. Vous n’aurez probablement jamais besoin de l’identifiant
pour gérer des liaisons, Django s’en occupera et renverra directement l’objet de l’entrée
associée.

En résumé

– Une base de données permet de stocker vos données de façon organisée et de les
récupérer en envoyant des requêtes à votre système de gestion de base de données ;

– De manière générale, nous communiquons la plupart du temps avec les bases de
données via le langage SQL ;

– Il existe plusieurs systèmes de gestion de bases de données, ayant chacun ses parti-
cularités ;

– Pour faire face à ces différences, Django intègre une couche d’abstraction, afin de
communiquer de façon uniforme et plus intuitive avec tous les systèmes : il s’agit de
l’ORM que nous avons présenté brièvement ;

– Une ligne dans une table peut être liée à une autre ligne d’une autre table via le
principe de clés étrangères : nous gardons l’identifiant de la ligne de la seconde table
dans une colonne de la ligne de la première table.

28

Deuxième partie

Premiers pas

29

Chapitre 5
Votre première page grâce aux vues

Difficulté :

D ans ce chapitre, nous allons créer notre première page web avec Django. Pour ce
faire, nous verrons comment créer une vue dans une application et la rendre accessible
depuis une URL. Une fois cela fait, nous verrons comment organiser proprement nos

URL afin de rendre le code plus propre et structuré. Nous aborderons ensuite deux cas
spécifiques des URL, à savoir la gestion de paramètres et de variables dans celles-ci, et les
redirections, messages d’erreur, etc.

Cette partie est fondamentale pour aborder la suite et comprendre le fonctionnement du
framework en général. Autrement dit, nous ne pouvons que vous conseiller de bien vous
accrocher tout du long !

31

CHAPITRE 5. VOTRE PREMIÈRE PAGE GRÂCE AUX VUES

Hello World !

Commençons enfin notre blog sur les bonnes crêpes bretonnes. En effet, au chapitre
précédent, nous avons créé une application « blog » dans notre projet, il est désormais
temps de se mettre au travail !

Pour rappel, comme vu dans la théorie, chaque vue se doit d’être associée au minimum
à une URL. Avec Django, une vue est représentée par une fonction définie dans le fichier
views.py. Cette fonction va généralement récupérer des données dans les modèles (ce
que nous verrons plus tard) et appeler le bon template pour générer le rendu HTML
adéquat. Par exemple, nous pourrions donner la liste des 10 derniers articles de notre
blog au moteur de templates, qui se chargera de les insérer dans une page HTML finale,
qui sera renvoyée à l’utilisateur.

Pour débuter, nous allons réaliser quelque chose de relativement simple : une page qui
affichera « Bienvenue sur mon blog ! ».

La gestion des vues

Chaque application possède son propre fichier views.py, regroupant l’ensemble des
fonctions que nous avons introduites précédemment. Comme tout bon blog, le nôtre
possèdera plusieurs vues qui rempliront diverses tâches, comme l’affichage d’un article
par exemple.

Commençons à travailler dans blog/views.py. Par défaut, Django a généré gentiment
ce fichier avec le commentaire suivant :

1 # Create your views here.

Pour éviter tout problème par la suite, indiquons à l’interpréteur Python que le fichier
sera en UTF-8, afin de prendre en charge les accents. En effet, Django gère totalement
l’UTF-8 et il serait bien dommage de ne pas l’utiliser. Insérez ceci comme première
ligne de code du fichier :

1 #-*- coding: utf -8 -*-

Cela vaut pour tous les fichiers que nous utiliserons à l’avenir. Spécifiez tou-
jours un encodage UTF-8 au début de ceux-ci !

Désormais, nous pouvons créer une fonction qui remplira le rôle de la vue. Bien que
nous n’ayons vu pour le moment ni les modèles, ni les templates, il est tout de même
possible d’écrire une vue, mais celle-ci restera basique. En effet, il est possible d’écrire
du code HTML directement dans la vue et de le renvoyer au client :

1 #-*- coding: utf -8 -*-
2 from django.http import HttpResponse
3
4 def home(request):

32

ROUTAGE D’URL : COMMENT J’ACCÈDE À MA VUE?

5 text = """<h1 >Bienvenue sur mon blog !</h1 >
6 <p>Les crêpes bretonnes ça tue des mouettes en

plein vol !</p>"""
7 return HttpResponse(text)

Ce code se divise en trois parties :

– Nous importons la classe HttpResponse du module django.http. Cette classe per-
met de retourner une réponse (texte brut, JSON ou HTML comme ici) depuis une
chaîne de caractères. HttpResponse est spécifique à Django et permet d’encapsu-
ler votre réponse dans un objet plus générique, que le framework peut traiter plus
aisément.

– Une fonction home a été déclarée, avec comme argument une instance de HttpRe‌
quest. Nous avons nommé ici (et c’est presque partout le cas) sobrement cet argu-
ment request. Celui-ci contient des informations sur la méthode de la requête (GET,
POST), les données des formulaires, la session du client, etc. Nous y reviendrons plus
tard.

– Finalement, la fonction déclare une chaîne de caractères nommée text et crée une
nouvelle instance de HttpResponse à partir de cette chaîne, que la fonction renvoie
ensuite au framework.

Toutes les fonctions prendront comme premier argument un objet du type
HttpRequest. Toutes les vues doivent forcément retourner une instance de
HttpResponse, sans quoi Django générera une erreur.

Par la suite, ne renvoyez jamais du code HTML directement depuis la vue comme
nous le faisons ici. Passez toujours par des templates, ce que nous introduirons au
chapitre suivant. Il s’agit de respecter l’architecture du framework dont nous avons
parlé dans la partie précédente afin de bénéficier de ses avantages (la structuration du
code notamment). Nous n’avons utilisé cette méthode que dans un but pédagogique et
afin de montrer les choses une par une.

Routage d’URL : comment j’accède à ma vue ?

Nous avons désormais une vue opérationnelle, il n’y a plus qu’à l’appeler depuis une
URL. Mais comment ? En effet, nous n’avons pas encore défini vers quelle URL pointait
cette fonction. Pour ce faire, il faut modifier le fichier urls.py de votre projet (ici
crepes_bretonnes/urls.py). Par défaut, ce fichier contient une aide basique :

1 from django.conf.urls import patterns , include , url
2
3 # Uncomment the next two lines to enable the admin:
4 # from django.contrib import admin
5 # admin.autodiscover ()
6
7 urlpatterns = patterns('',
8 # Examples:

33

CHAPITRE 5. VOTRE PREMIÈRE PAGE GRÂCE AUX VUES

9 # url(r'^$', 'crepes.views.home ', name='home '),
10 # url(r'^crepes/', include('crepes.foo.urls ')),
11
12 # Uncomment the admin/doc line below to enable admin

documentation:
13 # url(r'^admin/doc/', include('django.contrib.admindocs.

urls ')),
14
15 # Uncomment the next line to enable the admin:
16 # url(r'^admin/', include(admin.site.urls)),
17)

Quand un utilisateur appelle une page de votre site, la requête est directement prise
en charge par le contrôleur de Django qui va chercher à quelle vue correspond cette
URL. En fonction de l’ordre de définition dans le fichier précédent, la première vue qui
correspond à l’URL demandée sera appelée, et elle retournera donc la réponse HTML
au contrôleur (qui, lui, la retournera à l’utilisateur). Si aucune URL ne correspond à un
schéma que vous avez défini, alors Django renverra une page d’erreur 404. Le schéma
d’exécution est celui de la figure 5.1.

Figure 5.1 – Schéma d’exécution d’une requête (nous travaillons pour le moment sans
templates et sans modèles)

Occupons-nous uniquement du tuple urlpatterns, qui permet de définir les associa-
tions entre URL et vues. Une association de routage basique se définit par un sous-tuple
composé des éléments suivants :

– Le pattern de l’URL : une URL peut être composée d’arguments qui permettent par
la suite de retrouver des informations dans les modèles par exemple. Exemple : un
titre d’article, le numéro d’un commentaire, etc. ;

– Le chemin Python vers la vue correspondante.

Par exemple, en reprenant la vue définie tout à l’heure, si nous souhaitons que celle-ci
soit accessible depuis l’URL http://www.crepes-bretonnes.com/accueil, il suffit de
rajouter cette règle dans votre urlpatterns :

1 urlpatterns = patterns('',

34

ROUTAGE D’URL : COMMENT J’ACCÈDE À MA VUE?

2 url(r'^accueil/$', 'blog.views.home'),
3)

Mettre r’^$’ comme URL équivaut à spécifier la racine du site web. Autre-
ment dit, si nous avions utilisé cette URL à la place de r’^accueil/$’, la
vue serait accessible depuis http://www.crepes-bretonnes.com/.

Qu’est-ce que c’est, tous ces caractères bizarres dans l’URL ?

Il s’agit d’expressions régulières (ou « regex ») qui permettent de créer des URL plus
souples. Il est généralement conseillé de maîtriser au moins les bases des regex pour
pouvoir écrire des URL correctes. Dans ce cas-ci :

– ^ indique le début de la chaîne (autrement dit, il ne peut rien y avoir avant /ac‌
cueil) ;

– ? indique que le caractère précédent peut être absent ;
– $ est le contraire de ^, il indique la fin de la chaîne.

Bien évidemment, toute expression régulière compatible avec le module re de Python
sera compatible ici aussi.

Si vous n’êtes pas assez à l’aise avec les expressions régulières, nous vous
conseillons de faire une pause et d’aller voir le chapitre « Les expressions
régulières » du cours « Apprenez à programmer en Python ».

B

�

�
	Lire le chapitre

Code web : 376452
Concernant le lien vers la vue, il s’agit du même type de lien utilisé lors d’une impor-
tation de module. Ici :

– blog indique le module qui forme l’application « blog » ;
– views indique le fichier concerné du module ;
– home est la fonction du fichier views.py.

Grâce à cette règle, Django saura que lorsqu’un client demande la page http://www.cre
pes-bretonnes.com/accueil, il devra appeler la vue blog.views.home.

Enregistrez les modifications, lancez le serveur de développement Django et laissez-le
tourner (pour rappel : python manage.py runserver), et rendez-vous sur http://loc
alhost:8000/accueil/. Vous devriez obtenir quelque chose comme la figure 5.2.

Si c’est le cas, félicitations, vous venez de créer votre première vue !

35

http://www.siteduzero.com/codeweb/376452

CHAPITRE 5. VOTRE PREMIÈRE PAGE GRÂCE AUX VUES

Figure 5.2 – L’affichage de votre première vue

Organiser proprement vos URL

Dans la partie précédente, nous avions parlé de deux avantages importants de Django :
la réutilisation d’applications et la structuration du code. Sauf qu’évidemment, un
problème se pose avec l’utilisation des URL que nous avons faites : si nous avons
plusieurs applications, toutes les URL de celles-ci iraient dans urls.py du projet, ce
qui compliquerait nettement la réutilisation d’une application et ne structure en rien
votre code.

En effet, il faudrait sans cesse recopier toutes les URL d’une application en l’incluant
dans un projet, et une application complexe peut avoir des dizaines d’URL, ce qui
ne facilite pas la tâche du développeur. Sans parler de la problématique qui survient
lorsqu’il faut retrouver la bonne vue parmi la centaine de vues déjà écrites. C’est pour
cela qu’il est généralement bien vu de créer dans chaque application un fichier également
nommé urls.py et d’inclure ce dernier par la suite dans le fichier urls.py du projet.

Comment procède-t-on ?

Tout d’abord, il faut créer un fichier urls.py dans le dossier de votre application, ici
blog. Ensuite, il suffit d’y réécrire l’URL que nous avons déjà écrite précédemment (ne
pas oublier l’importation des modules nécessaires !) :

1 from django.conf.urls import patterns , url
2
3 urlpatterns = patterns('',
4 url(r'^accueil/$', 'blog.views.home'),
5)

Et c’est déjà tout pour blog/urls.py !

Maintenant, retournons à crepes_bretonnes/urls.py. Nous pouvons y enlever la
règle réécrite dans blog/urls.py. Il ne devrait donc plus rester grand-chose. L’impor-

36

ORGANISER PROPREMENT VOS URL

tation des règles de blogs/urls.py est tout aussi simple, il suffit d’utiliser la fonction
include de django.conf.urls et d’ajouter ce sous-tuple à urlpatterns :
1 url(r'^blog/', include('blog.urls'))

En quoi consiste l’URL ^blog/ ici ?

Cette URL (en réalité portion d’URL), va précéder toutes les URL incluses. Autre-
ment dit, nous avions une URL /accueil qui envoyait vers la vue blog.views.home,
désormais celle-ci sera accessible depuis /blog/accueil. Et cela vaut pour toutes les
futures URL importées. Cependant, rien ne vous empêche de laisser cette chaîne de
caractères vide (/accueil restera /accueil), mais il s’agit d’une bonne solution pour
structurer vos URL.

Nous avons scindé nos URL dans un fichier urls.py pour chaque application. Cepen-
dant, nous allons bientôt ajouter d’autres URL plus complexes dans notre blog/urls.py.
Toutes ces URL seront routées vers des vues de blog.views. Au final, la variable url‌
patterns de notre blog/urls.py risque de devenir longue :
1 urlpatterns = patterns('',
2 url(r'^accueil/$', 'blog.views.home'),
3 url(r'^truc/$', 'blog.views.truc'),
4 url(r'^chose/$', 'blog.views.chose'),
5 url(r'^machin/$', 'blog.views.machin '),
6 url(r'^foo/$', 'blog.views.foo'),
7 url(r'^bar/$', 'blog.views.bar'),
8)

Maintenant, imaginez que votre application « blog » change de nom, vous allez devoir
réécrire tous les chemins vers vos vues ! Pour éviter de devoir modifier toutes les règles
une à une, il est possible de spécifier un module par défaut qui contient toutes les vues.
Pour ce faire, il faut utiliser le premier élément de notre tuple qui est resté une chaîne
de caractères vide jusqu’à maintenant :
1 urlpatterns = patterns('blog.views',
2 url(r'^accueil/$', 'home'),
3 url(r'^truc/$', 'truc'),
4 url(r'^chose/$', 'chose'),
5 url(r'^machin/$', 'machin '),
6 url(r'^foo/$', 'foo'),
7 url(r'^bar/$', 'bar'),
8)

Tout est beaucoup plus simple et facilement éditable. Le module par défaut ici est
blog.views, car toutes les vues viennent de ce fichier-là ; cela est désormais possible,
car nous avons scindé notre urls.py principal en plusieurs urls.py propres à chaque
application.

Finalement, notre blog/urls.py ressemblera à ceci :

37

CHAPITRE 5. VOTRE PREMIÈRE PAGE GRÂCE AUX VUES

1 from django.conf.urls import patterns , url
2
3 urlpatterns = patterns('blog.views',
4 url(r'^accueil/$', 'home'),
5)

Ne négligez pas cette solution, utilisez-la dès maintenant ! Il s’agit d’une excellente
méthode pour structurer votre code, parmi tant d’autres que Django offre. Pensez aux
éventuels développeurs qui pourraient maintenir votre projet après vous et qui n’ont
pas envie de se retrouver avec une structure proche de l’anarchie.

Passer des arguments à vos vues

Nous avons vu comment lier des URL à des vues et comment les organiser. Cependant,
un besoin va bientôt se faire sentir : pouvoir passer des paramètres dans nos adresses
directement. Si vous observez les adresses du site Instagram (qui est basé sur Django
pour rappel), le lien vers une photo est construit ainsi : http://instagr.am/p/*******
où ******* est une suite de caractères alphanumériques. Cette suite représente en
réalité l’identifiant de la photo sur le site et permet à la vue de récupérer les informations
en relation avec cette photo.

Pour passer des arguments dans une URL, il suffit de capturer ces arguments directe-
ment depuis les expressions régulières. Par exemple, si nous souhaitons sur notre blog
pouvoir accéder à un certain article via l’adresse /blog/article/** où ** sera l’iden-
tifiant de l’article (un nombre unique), il suffit de fournir le routage suivant dans votre
urls.py :

1 urlpatterns = patterns('blog.views',
2 url(r'^accueil/$', 'home'), # Accueil du blog
3 url(r'^article /(\d+)/$', 'view_article '), # Vue d'un

article
4 url(r'^articles /(\d{4})/(\d{2})/$', 'list_articles '), # Vue

des articles d'un mois précis
5)

Lorsque l’URL /blog/article/42 est demandée, Django regarde le routage et exécute
la fonction view_article, en passant en paramètre 42. Autrement dit, Django appelle
la vue de cette manière : view_article(request, 42). Voici un exemple d’implémen-
tation :

1 def view_article(request , id_article):
2 """ Vue qui affiche un article selon son identifiant (ou ID

, ici un numéro). Son ID est le second paramètre de la
fonction

3 (pour rappel , le premier paramètre est TOUJOURS la requ
ête de l'utilisateur) """

4
5 text = "Vous avez demandé l'article n˚{0} !".format(

id_article)

38

PASSER DES ARGUMENTS À VOS VUES

6 return HttpResponse(text)

Il faut cependant faire attention à l’ordre des paramètres dans l’URL afin qu’il cor-
responde à l’ordre des paramètres de la fonction. En effet, lorsque nous souhaitons
obtenir la liste des articles d’un mois précis, selon la troisième règle que nous avons
écrite, il faudrait accéder à l’URL suivante pour le mois de juin 2012 : /blog/arti‌
cles/2012/06.

Cependant, si nous souhaitons changer l’ordre des paramètres de l’URL pour afficher le
mois, et ensuite l’année, celle-ci deviendrait /blog/articles/06/2012. Il faudra donc
modifier l’ordre des paramètres dans la déclaration de la fonction en conséquence.

Pour éviter cette lourdeur et un bon nombre d’erreurs, il est possible d’associer une
variable de l’URL à un paramètre de la vue. Voici la démarche :

1 urlpatterns = patterns('blog.views',
2 url(r'^home/$', 'home'), # Accueil du blog
3 url(r'^article /(?P<id_article >\d+)/$', 'view_article '), #

Vue d'un article
4 url(r'^articles /(?P<year >\d{4})/(?P<month >\d{2})/$', '

list_articles '), # Vue des articles d'un mois précis
5)

Et la vue correspondante :

1 def list_articles(request , month , year):
2 """ Liste des articles d'un mois précis. """
3
4 text = "Vous avez demandé les articles de {0} {1}.".format(

month , year)
5 return HttpResponse(text)

Dans cet exemple, mois et année (month et year) ne sont pas dans le même ordre entre
le urls.py et le views.py, mais Django s’en occupe et règle l’ordre des arguments
en fonction des noms qui ont été donnés dans le urls.py. En réalité, le framework va
exécuter la fonction de cette manière :

1 list_articles(request , year=2012 , month=6)

Il faut juste s’assurer que les noms de variables donnés dans le fichier urls.py coïn-
cident avec les noms donnés dans la déclaration de la vue, sans quoi Python retournera
une erreur.

Pour terminer, sachez qu’il est toujours possible de passer des paramètres GET. Par
exemple : http://www.crepes-bretonnes.com/blog/article/1337?ref=twitter.
Django tentera de trouver le pattern correspondant en ne prenant en compte que ce
qui est avant les paramètres GET, c’est-à-dire /blog/article/1337/. Les paramètres
passés par la méthode GET sont bien évidemment récupérables, ce que nous verrons
plus tard.

39

CHAPITRE 5. VOTRE PREMIÈRE PAGE GRÂCE AUX VUES

Des réponses spéciales

Jusqu’ici, nous avons vu comment renvoyer une page HTML standard. Cependant, il
se peut que nous souhaitions renvoyer autre chose que du HTML : une erreur 404 (page
introuvable), une redirection vers une autre page, etc.

Simuler une page non trouvée

Parfois, une URL correspond bien à un pattern mais ne peut tout de même pas être
considérée comme une page existante. Par exemple, lorsque vous souhaitez afficher un
article avec un identifiant introuvable, il est impossible de renvoyer une page, même
si Django a correctement identifié l’URL et utilisé la bonne vue. Dans ce cas-là, nous
pouvons le faire savoir à l’utilisateur via une page d’erreur 404, qui correspond au code
d’erreur indiquant qu’une page n’a pas été trouvée. Pour ce faire, il faut utiliser une
exception du framework : Http404. Cette exception, du module django.http, arrête
le traitement de la vue, et renvoie l’utilisateur vers une page d’erreur.

Voici un rapide exemple d’une vue compatible avec une des règles de routage que nous
avons décrites dans le sous-chapitre précédent :

1 from django.http import HttpResponse , Http404
2
3 def view_article(request , id_article):
4 if int(id_article) > 100: #Si l'ID est supérieur à 100 ,

nous considérons que l'article n'existe pas
5 raise Http404
6
7 return HttpResponse('<h1>Mon article ici </h1>')

Si à l’appel de la page l’argument id_article est supérieur à 100, la page retournée
sera une erreur 404 de Django, visible à la figure suivante. Il est bien entendu possible
de personnaliser par la suite cette vue, avec un template, afin d’avoir une page d’erreur
qui soit en accord avec le design de votre site, mais cela ne fonctionne uniquement
qu’avec DEBUG = False dans le settings.py (en production donc). Si vous êtes en
mode de développement, vous aurez toujours une erreur similaire à la figure 5.3.

Rediriger l’utilisateur

Le second cas que nous allons aborder concerne les redirections. Il arrive que vous
souhaitiez rediriger votre utilisateur vers une autre page lorsqu’une action vient de se
dérouler, ou en cas d’erreur rencontrée. Par exemple, lorsqu’un utilisateur se connecte,
il est souvent redirigé soit vers l’accueil, soit vers sa page d’origine. Une redirection est
réalisable avec Django via la méthode redirect qui renvoie un objet HttpResponse‌
Redirect (classe héritant de HttpResponse), qui redirigera l’utilisateur vers une autre
URL. La méthode redirect peut prendre en paramètres plusieurs types d’arguments,
dont notamment une URL brute (chaîne de caractères) ou le nom d’une vue.

40

DES RÉPONSES SPÉCIALES

Figure 5.3 – Erreur 404, page introuvable

Si par exemple vous voulez que votre vue, après une certaine opération, redirige vos
visiteurs vers le Site du Zéro, il faudrait procéder ainsi :

1 from django.shortcuts import redirect
2
3 def list_articles(request , year , month):
4 # Il veut des articles ?
5 return redirect("http ://www.siteduzero.com") # Nous le

redirigeons vers le Site du Zéro

N’oubliez pas qu’une URL valide pour accéder à cette vue serait /blog/articles/2005/
05.

Cependant, si vous souhaitez rediriger votre visiteur vers une autre page de votre site
web, il est plus intéressant de privilégier l’autre méthode, qui permet de garder indé-
pendante la configuration des URL et des vues. Nous devons donc passer en argument
le nom de la vue vers laquelle nous voulons rediriger l’utilisateur, avec éventuellement
des arguments destinés à celle-ci.

1 from django.http import HttpResponse , Http404
2 from django.shortcuts import redirect
3
4 def view_article(request , id_article):
5 if int(id_article) > 100:
6 raise Http404
7
8 return redirect(view_redirection)
9

10 def view_redirection(request):
11 return HttpResponse(u"Vous avez été redirigé.")

1 url(r'^redirection/$', 'view_redirection '),

Ici, si l’utilisateur accède à l’URL /blog/article/101, il aura toujours une page 404.
Par contre, s’il choisit un ID inférieur à 100, alors il sera redirigé vers la seconde vue,
qui affiche un simple message.

41

CHAPITRE 5. VOTRE PREMIÈRE PAGE GRÂCE AUX VUES

Il est également possible de préciser si la redirection est temporaire ou définitive en
ajoutant le paramètre permanent=True. L’utilisateur ne verra aucune différence, mais
ce sont des détails que les moteurs de recherche prennent en compte lors du référence-
ment de votre site web.

Si nous souhaitions rediriger un visiteur vers la vue view_article définie précédem-
ment par un ID d’article spécifique, il suffirait simplement d’utiliser la méthode redi‌
rect ainsi :

1 return redirect('blog.views.view_article ',id_article=42)

Pourquoi est-ce que nous utilisons une chaîne de caractères pour désigner la
vue maintenant, au lieu de la fonction elle-même ?

Il est possible d’indiquer une vue de trois manières différentes :

1. En passant directement la fonction Python, comme nous l’avons vu au début ;
2. En donnant le chemin vers la fonction, dans une chaîne de caractères (ce qui

évite de l’importer si elle se situe dans un autre fichier) ;
3. En indiquant le nom de la vue tel qu’indiqué dans un urls.py (voir l’exemple

suivant).

En réalité, la fonction redirect va construire l’URL vers la vue selon le routage in-
diqué dans urls.py. Ici, il va générer l’URL /blog/article/42 tout seul et rediriger
l’utilisateur vers cette URL. Ainsi, si par la suite vous souhaitez modifier vos URL,
vous n’aurez qu’à le faire dans les fichiers urls.py, tout le reste se mettra à jour auto-
matiquement. Il s’agit d’une fonctionnalité vraiment pratique, il ne faut donc jamais
écrire d’URL en dur, sauf quand cette méthode est inutilisable (vers des sites tiers par
exemple).

Sachez qu’au lieu d’écrire à chaque fois tout le chemin d’une vue ou de l’importer, il
est possible de lui assigner un nom plus court et plus facile à utiliser dans urls.py.
Par exemple :

1 url(r'^article /(?P<id_article >\d+)/$', 'view_article ', name="
afficher_article"),

Notez le paramètre name="afficher_article" qui permet d’indiquer le nom de la
vue. Avec ce routage, en plus de pouvoir passer directement la fonction ou le chemin
vers celle-ci en argument, nous pouvons faire beaucoup plus court et procéder comme
ceci :

1 return redirect('afficher_article ', id_article=42)

Pour terminer, sachez qu’il existe également une fonction qui permet de générer sim-
plement l’URL et s’utilise de la même façon que redirect ; il s’agit de reverse (from
django.core.urlresolvers import reverse). Cette fonction ne retournera pas un
objet HttpResponseRedirect, mais simplement une chaîne de caractères contenant

42

DES RÉPONSES SPÉCIALES

l’URL vers la vue selon les éventuels arguments donnés. Une variante de cette fonction
sera utilisée dans les templates peu après pour générer des liens HTML vers les autres
pages du site.

En résumé

– Le minimum requis pour obtenir une page web avec Django est une vue, associée à
une URL.

– Une vue est une fonction placée dans le fichier views.py d’une application. Cette
fonction doit toujours renvoyer un objet HttpResponse.

– Pour être accessible, une vue doit être liée à une ou plusieurs URL dans les fichiers
urls.py du projet.

– Les URL sont désignées par des expressions régulières, permettant la gestion d’argu-
ments qui peuvent être passés à la vue pour rendre l’affichage différent selon l’URL
visitée.

– Il est conseillé de diviser le urls.py du projet en plusieurs fichiers, en créant un
fichier urls.py par application.

– Il existe des réponses plus spéciales permettant d’envoyer au navigateur du client les
codes d’erreur 404 (page non trouvée) et 403 (accès refusé), ou encore d’effectuer des
redirections.

43

CHAPITRE 5. VOTRE PREMIÈRE PAGE GRÂCE AUX VUES

44

Chapitre 6
Les templates

Difficulté :

L es templates sont écrits dans un mini-langage de programmation propre à Django et
qui possède des expressions et des structures de contrôle basiques (if/else, boucle
for, etc.) que nous appelons des tags. Le moteur transforme les tags qu’il rencontre

dans le fichier par le rendu HTML correspondant. Grâce à ceux-ci, il est possible d’effec-
tuer plusieurs actions algorithmiques : afficher une variable, réaliser des conditions ou des
boucles, faire des opérations sur des chaînes de caractères, etc.

45

CHAPITRE 6. LES TEMPLATES

Nous avons vu comment créer une vue et renvoyer du code HTML à l’utilisateur.
Cependant, la méthode que nous avons utilisée n’est pas très pratique, le code HTML
était en effet intégré à la vue elle-même ! Le code Python et le code HTML deviennent
plus difficiles à éditer et à maintenir pour plusieurs raisons :

– Les indentations HTML et Python se confondent ;
– La coloration syntaxique de votre éditeur favori ne fonctionnera généralement pas
pour le code HTML, celui-ci n’étant qu’une simple chaîne de caractères ;

– Si vous avez un designer dans votre projet, celui-ci risque de casser votre code Python
en voulant éditer le code HTML ;

– Etc.

C’est à cause de ces raisons que tous les frameworks web actuels utilisent un moteur
de templates.

Lier template et vue

Avant d’aborder le cœur même du fonctionnement des templates, retournons briève-
ment vers les vues. Dans la première partie, nous avons vu que nos vues étaient liées à
des templates (et des modèles), comme le montre la figure 6.1.

Figure 6.1 – Schéma d’exécution d’une requête

C’est la vue qui se charge de transmettre l’information de la requête au template,
puis de retourner le HTML généré au client. Dans le chapitre précédent, nous avons
utilisé la méthode HttpResponse(text) pour renvoyer le HTML au navigateur. Cette
méthode prend comme paramètre une chaîne de caractères et la renvoie sous la forme
d’une réponse HTTP. La question ici est la suivante : comment faire pour appeler notre
template, et générer la réponse à partir de celui-ci ? La fonction render a été conçue
pour résoudre ce problème.

46

LIER TEMPLATE ET VUE

La fonction render est en réalité une méthode de django.shortcut qui
nous simplifie la vie : elle génère un objet HttpResponse après avoir traité
notre template. Pour les puristes qui veulent savoir comment cela fonctionne
en interne, n’hésitez pas à aller fouiller dans la documentation officielle.

B

�

�
	Voir la documentation

Code web : 957632
Nous commençons par un exemple avec une vue qui renvoie juste la date actuelle à
l’utilisateur, et son fichier urls.py associé :

1 from datetime import datetime
2 from django.shortcuts import render
3
4 def tpl(request):
5 return render(request , 'blog/tpl.html', {'current_date ':

datetime.now()})

1 url(r'^$', 'tpl'),

Cette fonction prend en argument trois paramètres :

1. La requête initiale, qui a permis de construire la réponse (request dans notre
cas) ;

2. Le chemin vers le template adéquat dans un des dossiers de templates donnés
dans settings.py ;

3. Un dictionnaire reprenant les variables qui seront accessibles dans le template.

Ici, notre template sera tpl.html, dans le sous-dossier blog, et nous aurons accès à une
seule variable : current_date qui aura comme valeur la date renvoyée par la fonction
datetime.now().

Créons le template correspondant dans le dossier templates/blog/, ici nommé tpl.html :

1 <h1>Bienvenue sur mon blog </h1 >
2 <p>La date actuelle est : {{ current_date }}</p>

Nous retrouvons current_date, comme passé dans render() ! Si vous accédez à cette
page (après lui avoir assigné une URL), le {{ current_date }} est bel et bien remplacé
par la date actuelle !

Deuxième exemple : une vue, et son template associé, qui additionne deux nombres
donnés dans l’URL.

1 def addition(request , nombre1 , nombre2):
2 total = int(nombre1) + int(nombre2)
3
4 # retourne nombre1 , nombre2 et la somme des deux
5 return render(request , 'blog/addition.html', locals ())

1 url(r'^addition /(?P<nombre1 >\d+)/(?P<nombre2 >\d+)/$', 'addition
'),

47

http://www.siteduzero.com/codeweb/957632

CHAPITRE 6. LES TEMPLATES

1 <h1>Ma super calculatrice </h1 >
2 <p>{{ nombre1 }} + {{ nombre2 }}, ça fait {{ total }}</

strong > !

3 Nous pouvons également calculer la somme dans le template : {{

nombre1|add:nombre2 }}.

Nous expliquerons bientôt les structures présentes dans ce template, ne vous
inquiétez pas.

La seule différence dans la vue réside dans le deuxième argument donné à render. Au
lieu de lui passer un dictionnaire directement, nous faisons appel à la fonction locals()
qui va retourner un dictionnaire contenant toutes les variables locales de la fonction
depuis laquelle locals() a été appelée. Les clés seront les noms de variables (par
exemple total), et les valeurs du dictionnaire seront tout simplement. . . les valeurs des
variables de la fonction ! Ainsi, si nombre1 valait 42, la valeur nombre1 du dictionnaire
vaudra elle aussi 42.

Affichons nos variables à l’utilisateur

Affichage d’une variable

Comme nous l’avons déjà expliqué, la vue transmet au template les données destinées
à l’utilisateur. Ces données correspondent à des variables classiques de la vue. Nous
pouvons les afficher dans le template grâce à l’expression {{ }} qui prend à l’intérieur
des accolades un argument (on pourrait assimiler cette expression à une fonction), le
nom de la variable à afficher. Le nom des variables est également limité aux caractères
alphanumériques et aux underscores.

1 Bonjour {{ pseudo }}, nous sommes le {{ date }}.

Ici, nous considérons que la vue a transmis deux variables au template : pseudo et
date. Ceux-ci seront affichés par le moteur de template. Si pseudo vaut « Zozor » et
date « 28 décembre », le moteur de templates affichera « Bonjour Zozor, nous sommes
le 28 décembre. ».

Si jamais la variable n’est pas une chaîne de caractères, le moteur de templates utilisera
la méthode __str__ de l’objet pour l’afficher. Par exemple, les listes seront affichés sous
la forme [’element 1’, ’element 2’...], comme si vous demandiez son affichage
dans une console Python. Il est possible d’accéder aux attributs d’un objet comme
en Python, en les juxtaposant avec un point. Plus tard, nos articles de blog seront
représentés par des objets, avec des attributs titre, contenu, etc. Pour y accéder, la
syntaxe sera la suivante :

1 {# Nous supposons que notre vue a fourni un objet nommé article
contenant les attributs titre , auteur et contenu #}

48

AFFICHONS NOS VARIABLES À L’UTILISATEUR

2 <h2 >{{ article.titre }}</h2>
3 <p>Article publié par {{ article.auteur }}</p>
4
5 <p>{{ article.contenu }}</p>

Si jamais une variable n’existe pas, ou n’a pas été envoyée au tem-
plate, la valeur qui sera affichée à sa place est celle définie par TEM‌
PLATE_STRING_IF_INVALID dans votre settings.py, qui est une chaîne
vide par défaut.

Les filtres

Lors de l’affichage des données, il est fréquent de devoir gérer plusieurs cas. Les filtres
permettent de modifier l’affichage en fonction d’une variable, sans passer par la vue.
Prenons un exemple concret : sur la page d’accueil des sites d’actualités, le texte des
dernières nouvelles est généralement tronqué, seul le début est affiché. Pour réaliser la
même chose avec Django, nous pouvons utiliser un filtre qui limite l’affichage aux 80
premiers mots de notre article :
1 {{ texte|truncatewords:80 }}

Ici, le filtre truncatewords (qui prend comme paramètre un nombre, séparé par un
deux-points) est appliqué à la variable texte. À l’affichage, cette dernière sera tronquée
et l’utilisateur ne verra que les 80 premiers mots de celle-ci.

Ces filtres ont pour but d’effectuer des opérations de façon claire, afin d’alléger les vues,
et ne marchent que lorsqu’une variable est affichée (avec la structure {{ }} donc). Il
est par exemple possible d’accorder correctement les phrases de votre site avec le filtre
pluralize :
1 Vous avez {{ nb_messages }} message {{ nb_messages|pluralize }}.

Dans ce cas, un « s » sera ajouté si le le nombre de messages est supérieur à 1. Il est
possible de passer des arguments au filtre afin de coller au mieux à notre chère langue
française :
1 Il y a {{ nb_chevaux }} chev{{ nb_chevaux|pluralize:"al,aux" }}

dans l’écurie.

Ici, nous aurons « cheval » si nb_chevaux est égal à 1 et « chevaux » pour le reste.

Et un dernier pour la route : imaginons que vous souhaitiez afficher le pseudo du
membre connecté, ou le cas échéant « visiteur ». Il est possible de le faire en quelques
caractères, sans avoir recours à une condition !
1 Bienvenue {{ pseudo|default:"visiteur" }}

En bref, il existe des dizaines de filtres par défaut : safe, length, etc. Tous les filtres
sont répertoriés et expliqués dans la documentation officielle de Django, n’hésitez pas à
y jeter un coup d’œil pour découvrir d’éventuels filtres qui pourraient vous être utiles.

49

CHAPITRE 6. LES TEMPLATES

B

�

�
	Voir la documentation

Code web : 112637

Manipulons nos données avec les tags

Abordons maintenant le second type d’opération implémentable dans un template : les
tags. C’est grâce à ceux-ci que les conditions, boucles, etc. sont disponibles.

Les conditions : {% if %}

Tout comme en Python, il est possible d’exécuter des conditions dans votre template
selon la valeur des variables passées au template :

1 Bonjour
2 {% if sexe == "Femme" %}
3 Madame
4 {% else %}
5 Monsieur
6 {% endif %} !

Ici, en fonction du contenu de la variable sexe, l’utilisateur ne verra pas le même texte
à l’écran. Ce template est similaire au code HTML généré par la vue suivante :

1 def tpl(request):
2 sexe = "Femme"
3 html = "Bonjour "
4 if sexe == "Femme":
5 html += "Madame"
6 else:
7 html += "Monsieur"
8 html += " !"
9 return HttpResponse(html)

La séparation entre vue et template simplifie grandement les choses, et permet une plus
grande lisibilité que lorsque le code HTML est écrit directement dans la vue !

Il est également possible d’utiliser les structures if, elif, else de la même façon :

1 {% if age > 25 %}
2 Bienvenue Monsieur , passez un excellent moment dans nos

locaux.
3 {% elif age > 16 %}
4 Vas -y, tu peux passer.
5 {% else %}
6 Tu ne peux pas rentrer petit , tu es trop jeune !
7 {% endif %}

50

http://www.siteduzero.com/codeweb/112637

MANIPULONS NOS DONNÉES AVEC LES TAGS

Les boucles : {% for %}

Tout comme les conditions, le moteur de templates de Django permet l’utilisation de
la boucle for, similaire à celle de Python. Admettons que nous possédions dans notre
vue un tableau de couleurs définies en Python :

1 couleurs = ['rouge', 'orange ', 'jaune', 'vert', 'bleu', 'indigo
', 'violet ']

Nous décidons dès lors d’afficher cette liste dans notre template grâce à la syntaxe {%
for %} suivante :

1 Les couleurs de l’arc -en-ciel sont :
2
3 {% for couleur in couleurs %}
4 {{ couleur }}
5 {% endfor %}
6

Avec ce template, le moteur va itérer la liste (cela fonctionne avec n’importe quel
autre type itérable), remplacer la variable couleur par l’élément actuel de l’itération
et générer le code compris entre {% for %} et {% endfor %} pour chaque élément de
la liste. Comme résultat, nous obtenons le code HTML suivant :

1 Les couleurs de l’arc -en-ciel sont :
2
3 rouge
4 orange
5 jaune
6 vert
7 bleu
8 indigo
9 violet

10

Il est aussi possible de parcourir un dictionnaire, en passant par la directive {% for
cle, valeur in dictionnaire.items %} :

1 couleurs = {'FF0000 ':'rouge',
2 'ED7F10 ':'orange ',
3 'FFFF00 ':'jaune',
4 '00FF00 ':'vert',
5 '0000FF ':'bleu',
6 '4B0082 ':'indigo ',
7 '660099 ':'violet '}

1 Les couleurs de l’arc -en-ciel sont :
2
3 {% for code , nom in couleurs.items %}
4 <li style="color :#{{ code }}" >{{ nom }}
5 {% endfor %}

51

CHAPITRE 6. LES TEMPLATES

6
7
8 Résultat :
9

10 <li style="color:# ED7F10">orange
11 <li style="color:# 4B0082">indigo
12 <li style="color:# 0000FF">bleu
13 <li style="color:# FFFF00">jaune
14 <li style="color:# 660099">violet
15 <li style="color:# FF0000">rouge
16 <li style="color:# 00FF00">vert
17

Vous pouvez aussi réaliser n’importe quelle opération classique avec la variable générée
par la boucle for (ici couleur) : une condition, utiliser une autre boucle, l’afficher, etc.

Rappelez-vous que la manipulation de données doit être faite au maximum
dans les vues. Ces tags doivent juste servir à l’affichage !

Enfin, il existe une troisième directive qui peut être associée au {% for %}, il s’agit
de {% empty %}. Elle permet d’afficher un message par défaut si la liste parcourue est
vide. Par exemple :

1 <h3>Commentaires de l’article </h3 >
2 {% for commentaire in commentaires %}
3 <p>{{ commentaire }}</p>
4 {% empty %}
5 <p class="empty">Pas de commentaires pour le moment.</p>
6 {% endfor %}

Ici, s’il y a au moins un élément dans commentaires, alors une suite de paragraphes
sera affichée, contenant chacun un élément de la liste. Sinon, le paragraphe « Pas de
commentaires pour le moment. » sera renvoyé à l’utilisateur.

Le tag {% block %}

Sur la quasi-totalité des sites web, une page est toujours composée de la même façon :
un haut de page, un menu et un pied de page. Si vous copiez-collez le code de vos
menus dans tous vos templates et qu’un jour vous souhaitez modifier un élément de
votre menu, il vous faudra modifier tous vos templates ! Heureusement, le tag {% block
%} nous permet d’éviter cette épineuse situation. En effet, il est possible de déclarer
des blocs, qui seront définis dans un autre template, et réutilisables dans le template
actuel. Dès lors, nous pouvons créer un fichier, appelé usuellement base.html, qui va
définir la structure globale de la page, autrement dit son squelette. Par exemple :

1 <!DOCTYPE html >
2 <html lang="fr">

52

MANIPULONS NOS DONNÉES AVEC LES TAGS

3 <head >
4 <link rel="stylesheet" href="/media/css/style.css" />
5 <title >{% block title %}Mon blog sur les crêpes bretonnes {%

endblock %}</title >
6 </head >
7
8 <body >
9

10 <header >Crêpes bretonnes </header >
11 <nav >
12 {% block nav %}
13
14 Accueil
15 Blog
16
17 Contact
18
19 {% endblock %}
20 </nav >
21
22 <section id="content">
23 {% block content %}{% endblock %}
24 </section >
25
26 <footer >© Crêpes bretonnes </footer >
27 </body >
28 </html >

Ce template est composé de plusieurs éléments {% block %} :

– Dans la balise <title> : {% block title %}Mon blog sur les crêpes bretonnes{
% endblock %} ;

– Dans la balise <nav>, qui définit un menu ;
– Dans le corps de la page, qui recevra le contenu.

Tous ces blocs pourront être redéfinis ou inclus tels quels dans un autre template.
Voyons d’ailleurs comment redéfinir et inclure ces blocs. Ayant été écrits dans le fichier
base.html, nous appelons ce fichier dans chacun des templates de notre blog. Pour ce
faire, nous utilisons le tag {% extends %} (pour ceux qui ont déjà fait de la program-
mation objet, cela doit vous dire quelque chose ; cette méthode peut aussi être assimilée
à include en PHP). Nous parlons alors d’héritage de templates. Nous prenons la base
que nous surchargeons, afin d’obtenir un résultat dérivé :

1 {% extends "base.html" %}
2
3 {% block title %}Ma page d’accueil {% endblock %}
4
5 {% block content %}
6 <h2>Bienvenue !</h2>
7 <p>Lorem ipsum dolor sit amet , consectetur adipiscing elit.

Donec rhoncus massa non tortor.

53

CHAPITRE 6. LES TEMPLATES

8 Vestibulum diam diam , posuere in viverra in, ullamcorper
et libero.

9 Donec eget libero quis risus congue imperdiet ac id
lectus.

10 Nam euismod cursus arcu , et consequat libero ullamcorper
sit amet.

11 Sociosqu ad litora torquent per conubia nostra , per
inceptos himenaeos. Integer

12 sit amet diam. Vivamus imperdiet felis a enim tincidunt
interdum.</p>

13 {% endblock %}

Dans cet exemple, nous avons défini deux blocs, title et content. Le tag extends
va aller chercher dans le template donné en argument, ici base.html, et remplacer les
blocs vides de ce dernier par les blocs de même nom définis dans le template appelé
par la vue. Ainsi, title et content seront repris du template fils, mais nav sera le bloc
nav défini dans base.html. En résumé, regardez la structure représentée dans l’image
6.2.

Figure 6.2 – Fonctionnement du tag {% block %}

Les liens vers les vues : {% url %}

Nous avons vu dans le chapitre précédent les fonctions redirect et reverse, qui respec-
tivement redirige l’utilisateur et génère le lien vers une vue, selon certains paramètres.
Une variante sous la forme de tag de la fonction reverse existe, il s’agit de {% url
%}. Le fonctionnement de ce tag est très similaire à la fonction dont il est dérivé :
1 Lien vers mon

super article N˚ 42

. . . générera le code HTML suivant :
1 Lien vers mon super article n˚ 42

54

AJOUTONS DES FICHIERS STATIQUES

Ce code nous indique le chemin vers la vue ou son nom comme premier paramètre, entre
guillemets. Les arguments qui suivent seront ceux de la vue (à condition de respecter
le nombre et l’ordre des paramètres selon la déclaration de la vue bien entendu).

Nous aurions tout à fait pu utiliser une variable comme paramètre, que ce soit pour le
nom de la vue ou les arguments :

1 Lien
vers mon super article n˚ {{ ID_article }}

Les commentaires : {% comment %}

Finalement, il existe un tag qui permet de définir des commentaires dans les templates.
Ces commentaires sont différents des commentaires HTML : ils n’apparaîtront pas dans
la page HTML. Cela permet par exemple de cacher temporairement une ligne, ou tout
simplement de documenter votre template, afin de pouvoir mieux s’y retrouver par la
suite.

Il existe deux syntaxes pour les commentaires : la première permet de faire un com-
mentaire sur une ligne uniquement : {# Mon commentaire #}.

1 <p>Ma page HTML </p>
2 <!-- Ce commentaire HTML sera visible dans le code source. -->
3 {# Ce commentaire Django ne sera pas visible dans le code

source. #}

Si vous souhaitez faire un commentaire sur plusieurs lignes, il vous faudra utiliser le
tag {% comment %}.

1 {% comment %}
2 Ceci est une page d’exemple. Elle est composée de 3

tableaux :
3 - tableau des ventes
4 - locations
5 - retours en garantie
6 {% endcomment %}

Ajoutons des fichiers statiques

Pour le moment, nous n’avons utilisé que du HTML dans nos templates. Cependant, un
site web est composé aujourd’hui de nombreuses ressources : CSS, JavaScript, images,
etc. Nous allons donc voir comment les intégrer dans nos templates.

Tout d’abord, créons un dossier à la racine du projet, dans lequel vous enregistrerez vos
fichiers. Nous l’appellerons assets. Il faut ensuite renseigner ce dossier et lui assigner
une URL dans votre settings.py. Voilà les deux variables qu’il faudra modifier, ici
selon notre exemple :

55

CHAPITRE 6. LES TEMPLATES

1 STATIC_URL = '/assets/'
2
3 STATICFILES_DIRS = (
4 "/home/crepes/crepes_bretonnes/assets/",
5)

La première variable indique l’URL du dossier depuis lequel vos fichiers seront acces-
sibles. La deuxième renseigne le chemin vers ces fichiers sur votre disque dur.

Par la suite, si vous mettez une image, nommée par exemple salut.jpg, dans votre
dossier assets (toujours selon notre exemple), vous pourrez l’inclure depuis votre tem-
plate de la façon suivante :

1 {% load static %}
2

Vous avez besoin de faire {% load static %} une fois au début de votre template,
et Django s’occupe tout seul de fournir l’URL vers votre ressource. Il est déconseillé
d’écrire en dur le lien complet vers les fichiers statiques, utilisez toujours {% static
%}. En effet, si en production vous décidez que vos fichiers seront servis depuis l’URL
assets.crepes-bretonnes.com, vous devrez modifier toutes vos URL si elles sont
écrites en dur ! En revanche, si elles utilisent {% static %}, vous n’aurez qu’à éditer
cette variable dans votre configuration, ce qui est tout de même bien plus pratique.

En réalité, Django ne doit pas s’occuper de servir ces fichiers, c’est à votre serveur web
qu’incombe cette tâche. Cependant, en développement, étant donné que nous utilisons
le serveur intégré fourni par défaut par Django, il est tout de même possible de s’arran-
ger pour que le framework serve ces fichiers. Pour ce faire, il faut ajouter un routage
spécifique à votre urls.py principal :

1 from django.conf.urls import patterns , include , url
2 from django.contrib.staticfiles.urls import

staticfiles_urlpatterns
3
4 urlpatterns = patterns('',
5 # Ici vos règles classiques , comme vu au chapitre précédent
6)
7
8 urlpatterns += staticfiles_urlpatterns ()

Cette fonction ne marche qu’avec DEBUG=True et ne doit donc être utilisée
qu’en développement !

Cette fonction va se baser sur les variables de votre fichier settings.py (URL et
emplacement des fichiers) pour générer une règle de routage correcte et adaptée. Pour
le déploiement des fichiers statiques en production, référez-vous à l’annexe consacrée à
ce sujet.

56

AJOUTONS DES FICHIERS STATIQUES

En résumé

– En pratique, et pour respecter l’architecture dictée par le framework Django, toute
vue doit retourner un objet HttpResponse construit via un template.

– Pour respecter cette règle, il existe des fonctions nous facilitant le travail, comme
render, présentée tout au long de ce chapitre. Elle permet de construire la réponse
HTML en fonction d’un fichier template et de variables.

– Les templates permettent également de faire plusieurs traitements, comme afficher
une variable, la transformer, faire des conditions. . . Attention cependant, ces traite-
ments ont pour unique but d’afficher les données, pas de les modifier.

– Il est possible de factoriser des blocs HTML (comme le début et la fin d’une page)
via l’utilisation des tags {% block %} et {% extends %}.

– Afin de faciliter le développement, Django possède un tag {% url %} permettant la
construction d’URL en lui fournissant la vue à appeler et ses éventuels paramètres.

– L’ajout de fichiers statiques dans notre template (images, CSS, JavaScript) peut se
faire via l’utilisation du tag {% static %}.

57

CHAPITRE 6. LES TEMPLATES

58

Chapitre 7
Les modèles

Difficulté :

N ous avons vu comment créer des vues et des templates. Cependant, ces derniers sont
presque inutiles sans les modèles, car votre site n’aurait rien de dynamique. Autant
créer des pages HTML statiques !

Dans ce chapitre, nous verrons les modèles qui, comme expliqué dans la première partie,
sont des interfaces permettant plus simplement d’accéder à des données dans une base de
données et de les mettre à jour.

59

CHAPITRE 7. LES MODÈLES

Créer un modèle

Un modèle s’écrit sous la forme d’une classe et représente une table dans la base de
données, dont les attributs correspondent aux champs de la table. Ceux-ci se rédigent
dans le fichier models.py de chaque application. Il est important d’organiser correcte-
ment vos modèles pour que chacun ait sa place dans son application, et ne pas mélanger
tous les modèles dans le même models.py. Pensez à la réutilisation et à la structure
du code !

Tout modèle Django se doit d’hériter de la classe mère Model incluse dans django.db.mo
dels (sinon il ne sera pas pris en compte par le framework). Par défaut, le fichier mo‌
dels.py généré automatiquement importe le module models de django.db. Voici un
simple exemple de modèle représentant un article de blog :

1 #-*- coding: utf -8 -*-
2 from django.db import models
3
4 class Article(models.Model):
5 titre = models.CharField(max_length=100)
6 auteur = models.CharField(max_length=42)
7 contenu = models.TextField(null=True)
8 date = models.DateTimeField(auto_now_add=True , auto_now=

False , verbose_name="Date de parution")
9

10 def __unicode__(self):
11 """
12 Cette méthode que nous définirons dans tous les modèles
13 nous permettra de reconnaître facilement les différents

objets que nous
14 traiterons plus tard et dans l'administration
15 """
16 return u"%s" % self.titre

Pour que Django puisse créer une table dans la base de données, il faut lui préciser
le type des champs qu’il doit créer. Pour ce faire, le framework propose une liste de
champs qu’il sera ensuite capable de retranscrire en langage SQL. Ces derniers sont
également situés dans le module models.

Dans l’exemple précédent, nous avons créé quatre attributs avec trois types de champs
différents. Un CharField (littéralement, un champ de caractères) a été assigné à titre
et auteur. Ce champ permet d’enregistrer une chaîne de caractères, dont la longueur
maximale a été spécifiée via le paramètre max_length. Dans le premier cas, la chaîne
de caractères pourra être composée de 100 caractères maximum.

Le deuxième type de champ, TextField, permet lui aussi d’enregistrer des caractères,
un peu comme CharField. En réalité, Django va utiliser un autre type de champ qui
ne fixe pas de taille maximale à la chaîne de caractères, ce qui est très pratique pour
enregistrer de longs textes.

Finalement, le champ DateTimeField prend comme valeur un objet DateTime du mo-

60

JOUONS AVEC DES DONNÉES

dule datetime de la bibliothèque standard. Il est donc possible d’enregistrer autre
chose que du texte !

Insistons ici sur le fait que les champs du modèle peuvent prendre plusieurs arguments.
Certains sont spécifiques au champ, d’autres non. Par exemple, le champ DateTime‌
Field possède un argument facultatif : auto_now_add. S’il est mis à True, lors de la
création d’une nouvelle entrée, Django mettra automatiquement à jour la valeur avec
la date et l’heure de la création de l’objet. Un autre argument du même genre existe,
auto_now, qui permet à peu près la même chose, mais fera en sorte que la date soit
mise à jour à chaque modification de l’entrée.

L’argument verbose_name en revanche est un argument commun à tous les champs
de Django. Il peut être passé à un DateTimeField, CharField, TextField, etc. Il
sera notamment utilisé dans l’administration générée automatiquement pour donner
une précision quant au nom du champ. Ici, nous avons insisté sur le fait que la date
correspond bien à la date de parution de l’article. Le paramètre null, lorsque mis à
True, indique à Django que ce champ peut être laissé vide et qu’il est donc optionnel.

Il existe beaucoup d’autres champs disponibles, ceux-ci sont repris dans la documen-
tation de Django. N’hésitez pas à la consulter en cas de doute ou question !

B

�

�
	Voir la documentation

Code web : 811718
Pour que Django crée la table associée au modèle, il suffit de lancer la commande
syncdb via manage.py :

python manage.py syncdb

Étant donné que c’est la première fois que vous lancez la commande, Django va créer
d’autres tables plus générales (utilisateurs, groupes, sessions, etc.), comme à la figure
7.1. À un moment, Django vous proposera de créer un compte administrateur. Répon-
dez par yes et complétez les champs qu’il proposera par la suite. Nous reviendrons sur
tout cela plus tard.

La table associée au modèle Article étant créée, nous pouvons commencer à jouer
avec !

Jouons avec des données

Django propose un interpréteur interactif Python synchronisé avec votre configuration
du framework. Il est possible via celui-ci de manipuler nos modèles comme si nous
étions dans une vue. Pour ce faire, il suffit d’utiliser une autre commande de l’utilitaire
manage.py :

$ python manage.py shell
Python 2.7.3 (default , Apr 24 2012, 00:00:54)
[GCC 4.7.0 20120414 (prerelease)] on linux2

61

http://www.siteduzero.com/codeweb/811718

CHAPITRE 7. LES MODÈLES

Figure 7.1 – Aperçu des tables créées dans un outil de gestion de base de données

Type "help", "copyright", "credits" or "license" for more
information.

(InteractiveConsole)
>>>

Commençons par importer le modèle que nous avons justement créé :

1 >>> from blog.models import Article

Pour ajouter une entrée dans la base de données, il suffit de créer une nouvelle instance
de la classe Article et de la sauvegarder. Chaque instance d’un modèle correspond
donc à une entrée dans la base de données. Nous pouvons spécifier la valeur des attributs
directement pendant l’instanciation de classe, ou l’assigner par la suite :

1 >>> article = Article(titre="Bonjour", auteur="Maxime")
2 >>> article.contenu = u"Les crêpes bretonnes sont trop bonnes !

"

Nous vous conseillons de toujours utiliser des chaînes de caractères unicode
pour toutes vos chaînes contenant des accents, comme le fait la dernière
ligne. Cela vous évitera bien des mauvaises surprises. Pour rappel, une chaîne
unicode est toujours précédée par u. Exemple : u"Eh, toi, là !".

Pourquoi n’avons-nous pas mis de valeur à l’attribut date du modèle ?

date est un DateTimeField dont le paramètre auto_now_add a été mis à True. Dès
lors, Django se charge tout seul de le mettre à jour avec la bonne date et heure lors

62

JOUONS AVEC DES DONNÉES

de la création. Cependant, il est tout de même obligatoire de remplir tous les champs
pour chaque entrée sauf cas comme celui-là, sans quoi Django retournera une erreur !

Nous pouvons bien évidemment accéder aux attributs de l’objet comme pour n’importe
quel autre objet Python :

1 >>> print article.auteur
2 Maxime

Pour sauvegarder l’entrée dans la base de données (les modifications ne sont pas en-
registrées en temps réel), il suffit d’appeler la méthode save, de la classe mère Model
dont hérite chaque modèle :

1 >>> article.save()

L’entrée a été créée et enregistrée !

Bien évidemment, il est toujours possible de modifier l’objet par la suite :

1 >>> article.titre = "Salut !"
2 >>> article.auteur = "Mathieu"
3 >>> article.save()

Il ne faut cependant pas oublier d’appeler la méthode save à chaque modification,
sinon les changements ne seront pas sauvegardés.

Pour supprimer une entrée dans la base de données, rien de plus simple, il suffit d’ap-
peler la méthode delete d’un objet :

1 >>> article.delete ()

Nous avons vu comment créer, éditer et supprimer des entrées. Il serait pourtant éga-
lement intéressant de pouvoir les obtenir par la suite, pour les afficher par exemple.
Pour ce faire, chaque modèle (la classe, et non l’instance, attention !), possède plusieurs
méthodes dans la sous-classe objects. Par exemple, pour obtenir toutes les entrées en-
registrées d’un modèle, il faut appeler la méthode all() :

1 >>> Article.objects.all()
2 []

Bien évidemment, étant donné que nous avons supprimé l’article créé un peu plus tôt,
l’ensemble renvoyé est vide, créons rapidement deux nouvelles entrées :

1 >>> Article(auteur="Mathieu", titre=u"Les crêpes", contenu=u"
Les crêpes c'est cool").save()

2 >>> Article(auteur="Maxime", titre="La Bretagne", contenu="La
Bretagne c'est trop bien").save()

Cela étant fait, réutilisons la méthode all :

1 >>> Article.objects.all()
2 [<Article: Les crêpes >, <Article: La Bretagne >]

L’ensemble renvoyé par la fonction n’est pas une vraie liste, mais un QuerySet. Il
s’agit d’un conteneur itérable qui propose d’autres méthodes sur lesquelles nous nous

63

CHAPITRE 7. LES MODÈLES

attarderons par la suite. Nous avons donc deux éléments, chacun correspondant à un
des articles que nous avons créés.

Nous pouvons donc par exemple afficher les différents titres de nos articles :
1 >>> for article in Article.objects.all():
2 ... print article.titre
3
4 Les crêpes
5 La Bretagne

Maintenant, imaginons que vous souhaitiez sélectionner tous les articles d’un seul au-
teur uniquement. La méthode filter a été conçue dans ce but. Elle prend en paramètre
une valeur d’un ou plusieurs attributs et va passer en revue toutes les entrées de la
table et ne sélectionner que les instances qui ont également la valeur de l’attribut
correspondant. Par exemple :
1 >>> for article in Article.objects.filter(auteur="Maxime"):
2 ... print article.titre , "par", article.auteur
3
4 La Bretagne par Maxime

Efficace ! L’autre article n’a pas été repris dans le QuerySet, car son auteur n’était pas
Maxime mais Mathieu.

Une méthode similaire à filter existe, mais fait le contraire : exclude. Comme son
nom l’indique, elle exclut les entrées dont la valeur des attributs passés en arguments
coïncide :
1 >>> for article in Article.objects.exclude(auteur="Maxime"):
2 ... print article.titre , "par", article.auteur
3
4 Les crêpes par Mathieu

Sachez que vous pouvez également filtrer ou exclure des entrées à partir de plusieurs
champs : Article.objects.filter(titre="Coucou", auteur="Mathieu") renverra
un QuerySet vide, car il n’existe aucun article de Mathieu intitulé « Coucou ».

Il est même possible d’aller plus loin, en filtrant par exemple les articles dont le titre
doit contenir certains caractères (et non pas être strictement égal à une chaîne entière).
Si nous souhaitons prendre tous les articles dont le titre comporte le mot « crêpe », il
faut procéder ainsi :
1 >>> Article.objects.filter(titre__contains="crêpe")
2 [<Article: Les crêpes >]

Ces méthodes de recherche spéciales sont construites en prenant le champ concerné
(ici titre), auquel nous ajoutons deux underscores « __ », suivis finalement de la
méthode souhaitée. Ici, il s’agit donc de titre__contains, qui veut dire littéralement
« prends tous les éléments dont le titre contient le mot passé en argument ».

D’autres méthodes du genre existent, notamment la possibilité de prendre des valeurs
du champ (strictement) inférieures ou (strictement) supérieures à l’argument passé,
grâce à la méthode lt (less than, plus petit que) et gt (greater than, plus grand que) :

64

JOUONS AVEC DES DONNÉES

1 >>> from datetime import datetime
2 >>> Article.objects.filter(date__lt=datetime.now())
3 [<Article: Les crêpes >, <Article: La Bretagne >]

Les deux articles ont été sélectionnés, car ils remplissent tous deux la condition (leur
date de parution est inférieure au moment actuel). Si nous avions utilisé gt au lieu de
lt, la requête aurait renvoyé un QuerySet vide, car aucun article n’a été publié après
le moment actuel.

De même, il existe lte et gte qui opèrent de la même façon, la différence réside juste
dans le fait que ceux-ci prendront tout élément inférieur/supérieur ou égal (lte : less
than or equal, plus petit ou égal, idem pour gte).

Sur la page d’accueil de notre blog, nous souhaiterons organiser les articles par date
de parution, du plus récent au plus ancien. Pour ce faire, il faut utiliser la méthode
order_by. Cette dernière prend comme argument une liste de chaînes de caractères qui
correspondent aux attributs du modèle :

1 >>> Article.objects.order_by('date')
2 [<Article: Les crêpes >, <Article: La Bretagne >]

Le tri se fait par ordre ascendant (ici du plus ancien au plus récent, nous avons enregistré
l’article sur les crêpes avant celui sur la Bretagne). Pour spécifier un ordre descendant,
il suffit de précéder le nom de l’attribut par le caractère « - » :

1 >>> Article.objects.order_by('-date')
2 [<Article: La Bretagne >, <Article: Les crêpes >]

Il est possible de passer plusieurs noms d’attributs à order_by. La priorité de chaque
attribut dans le tri est déterminée par sa position dans la liste d’arguments. Ainsi, si
nous trions les articles par nom et que deux d’entre eux ont le même nom, Django les
départagera selon le deuxième attribut, et ainsi de suite tant que des attributs comparés
seront identiques.

Accessoirement, nous pouvons inverser les éléments d’un QuerySet en utilisant la mé-
thode reverse().

Finalement, dernière caractéristique importante des méthodes de QuerySet, elles sont
cumulables, ce qui garantit une grande souplesse dans vos requêtes :

1 >>> Article.objects.filter(date__lt=datetime.now()).order_by('
date','titre').reverse ()

2 [<Article: La Bretagne >, <Article: Les crêpes >]

Pour terminer cette (longue) section, nous allons introduire des méthodes qui, contrai-
rement aux précédentes, retournent un seul objet et non un QuerySet.

Premièrement, get, comme son nom l’indique, permet d’obtenir une et une seule entrée
d’un modèle. Il prend les mêmes arguments que filter ou exclude. S’il ne retrouve
aucun élément correspondant aux conditions, ou plus d’un seul, il retourne une erreur :

1 >>> Article.objects.get(titre="Je n'existe pas")
2

65

CHAPITRE 7. LES MODÈLES

3 ...
4 DoesNotExist: Article matching query does not exist. Lookup

parameters were {'titre': "Je n'existe pas"}
5 >>> print Article.objects.get(auteur="Mathieu").titre
6 Les crêpes
7 >>> Article.objects.get(titre__contains="L")
8 ...
9 MultipleObjectsReturned: get() returned more than one Article

-- it returned 2! Lookup parameters were {'titre__contains ':
'L'}

Dans le même style, il existe une méthode permettant de créer une entrée si aucune
autre n’existe avec les conditions spécifiées. Il s’agit de get_or_create. Cette dernière
va renvoyer un tuple contenant l’objet désiré et un booléen qui indique si une nouvelle
entrée a été créée ou non :

1 Article.objects.get_or_create(auteur="Mathieu")
2 >>> (<Article: Les crêpes >, False)
3
4 Article.objects.get_or_create(auteur="Zozor", titre="Hi han")
5 >>> (<Article: Hi han >, True)

Les liaisons entre modèles

Il est souvent pratique de lier deux modèles entre eux, pour relier un article à une
catégorie par exemple. Django propose tout un système permettant de simplifier gran-
dement les différents types de liaison. Nous traiterons ce sujet dans ce sous-chapitre.

Reprenons notre exemple des catégories et des articles. Lorsque vous concevrez votre
base de données, vous allez souvent faire des liens entre les classes (qui représentent
nos tables SQL dans notre site), comme à la figure 7.2.

Figure 7.2 – Ici, un article peut être lié à une et une seule catégorie, et une catégorie
peut être attributée à une infinité d’articles

Pour traduire cette relation, nous allons d’abord devoir créer un autre modèle repré-
sentant les catégories. Ce dernier est relativement simple :

1 class Categorie(models.Model):
2 nom = models.CharField(max_length=30)

66

LES LIAISONS ENTRE MODÈLES

3
4 def __unicode__(self):
5 return self.nom

Maintenant, créons la liaison depuis notre modèle Article, qu’il va falloir modifier en
lui ajoutant un nouveau champ :

1 class Article(models.Model):
2 titre = models.CharField(max_length=100)
3 auteur = models.CharField(max_length=42)
4 contenu = models.TextField(null=True)
5 date = models.DateTimeField(auto_now_add=True , auto_now=

False , verbose_name="Date de parution")
6 categorie = models.ForeignKey('Categorie ')
7
8 def __unicode__(self):
9 return self.titre

Nous avons donc ajouté un champ ForeignKey. En français, ce terme est traduit par
« clé étrangère ». Il va enregistrer une clé, un identifiant propre à chaque catégorie
enregistrée (il s’agit la plupart du temps d’un nombre), qui permettra donc de retrouver
la catégorie associée.

Nous avons modifié notre classe Article et allons rencontrer un des rares défauts de
Django. En effet, si nous lancions maintenant manage.py syncdb, il créerait bien la
table correspondant au modèle Categorie, mais n’ajouterait pas le champ ForeignKey
dans la table Article pour autant. Pour résoudre ce problème, deux méthodes s’offrent
à vous :

– Vous créez manuellement le champ via l’interface SQLite et en langage SQL si vous
en êtes capables, cette solution conserve vos données, mais c’est la plus difficile à
implémenter ;

– Vous supprimez le fichier SQLite dans lequel la base de données est enregistrée (dans
la partie précédente, nous avons indiqué database.sql comme nom de fichier) et
utilisez ensuite la commande manage.py syncdb. Les données dans vos tables seront
perdues, mais les structures des tables seront à jour. Étant donné que nous n’avons
pas de vraies données pour le moment, privilégiez cette solution.

La base de données étant prête, ouvrez à nouveau un shell via manage.py shell.
Importons les modèles et créons une nouvelle catégorie :

1 >>> from blog.models import Categorie , Article
2
3 >>> cat = Categorie(nom=u"Crêpes")
4 >>> cat.save()
5
6 >>> art = Article ()
7 >>> art.titre=u"Les nouvelles crêpes"
8 >>> art.auteur="Maxime"
9 >>> art.contenu=u"On a fait de nouvelles crêpes avec du trop

bon rhum"

67

CHAPITRE 7. LES MODÈLES

10 >>> art.categorie = cat
11 >>> art.save()

Pour accéder aux attributs et méthodes de la catégorie associée à l’article, rien de plus
simple :

1 >>> print art.categorie.nom
2 Crêpes

Dans cet exemple, si un article ne peut avoir qu’une seule catégorie, une catégorie peut
en revanche avoir plusieurs articles. Pour réaliser l’opération en sens inverse (accéder
aux articles d’une catégorie depuis cette dernière), une sous-classe s’est créée toute
seule avec la ForeignKey :

1 >>> cat.article_set.all()
2 [<Article: Les nouvelles crêpes >]

Le nom que prendra une relation en sens inverse est composé du nom du modèle source
(qui a la ForeignKey comme attribut), d’un seul underscore « _ » et finalement du mot
set qui signifie en anglais « ensemble ». Nous accédons donc ici à l’ensemble des articles
d’une catégorie. Cette relation opère exactement comme n’importe quelle sous-classe
objects d’un modèle, et renvoie ici tous les articles de la catégorie. Nous pouvons
utiliser les méthodes que nous avons vues précédemment : all, filter, exclude,
order_by...

Point important : il est possible d’accéder aux attributs du modèle lié par une clé
étrangère depuis un filter, exclude, order_by. . . Nous pourrions ici par exemple
filtrer tous les articles dont le titre de la catégorie possède un certain mot :

1 >>> Article.objects.filter(categorie__nom__contains=u"crêpes")
2 [<Article: Les nouvelles crêpes >]

Accéder à un élément d’une clé étrangère se fait en ajoutant deux underscores « __ »,
comme avec les méthodes de recherche spécifiques, suivis du nom de l’attribut recher-
ché. Comme montré dans l’exemple, nous pouvons encore ajouter une méthode spéciale
de recherche sans aucun problème !

Un autre type de liaison existe, très similaire au principe des clés étrangères : le One‌
ToOneField. Ce dernier permet de lier un modèle à un autre tout aussi facilement, et
garantit qu’une fois la liaison effectuée plus aucun autre objet ne pourra être associé
à ceux déjà associés. La relation devient unique. Si nous avions utilisé notre exemple
avec un OneToOneField, chaque catégorie ne pourrait avoir qu’un seul article associé,
et de même pour chaque article.

Un autre bref exemple :

1 class Moteur(models.Model):
2 nom = models.CharField(max_length=25)
3
4 def __unicode__(self):
5 return self.nom
6

68

LES LIAISONS ENTRE MODÈLES

7 class Voiture(models.Model):
8 nom = models.CharField(max_length=25)
9 moteur = models.OneToOneField(Moteur)

10
11 def __unicode__(self):
12 return self.nom

N’oubliez pas de faire un manage.py syncdb !

Nous avons deux objets, un moteur nommé «Vroum » et une voiture nommée « Crêpes-
mobile » qui est liée au moteur. Nous pouvons accéder du moteur à la voiture ainsi,
depuis manage.py shell :

1 >>> from blog.models import Moteur , Voiture
2 >>> moteur = Moteur.objects.create(nom="Vroum") # create crée

directement l'objet et l'enregistre
3 >>> voiture = Voiture.objects.create(nom=u"Crêpes -mobile",

moteur=moteur)
4
5 >>> moteur.voiture
6 <Voiture: Crêpes -mobile >
7 >>> voiture.moteur
8 <Moteur: Vroum >

Ici, le OneToOneField a créé une relation en sens inverse qui ne va plus renvoyer
un QuerySet, mais directement l’élément concerné (ce qui est logique, celui-ci étant
unique). Cette relation inverse prendra simplement le nom du modèle, qui n’est donc
plus suivi par _set.

Sachez qu’il est possible de changer le nom de la variable créée par la relation inverse
(précédemment article_set et moteur). Pour ce faire, il faut utiliser l’argument re‌
lated_name du ForeignKey ou OneToOneField et lui passer une chaîne de caractères
désignant le nouveau nom de la variable (à condition que cette chaîne représente bien
un nom de variable valide !). Cette solution est notamment utilisée en cas de conflit
entre noms de variables. Accessoirement, il est même possible de désactiver la relation
inverse en donnant related_name=’+’.

Finalement, dernier type de liaison, le plus complexe : le ManyToManyField (traduit
littéralement, « plusieurs-à-plusieurs »). Reprenons un autre exemple simple : nous
construisons un comparateur de prix pour les ingrédients nécessaires à la réalisation de
crêpes. Plusieurs vendeurs proposent plusieurs produits, parfois identiques, à des prix
différents.

Il nous faudra trois modèles :

1 class Produit(models.Model):
2 nom = models.CharField(max_length=30)
3
4 def __unicode__(self):
5 return self.nom
6
7 class Vendeur(models.Model):

69

CHAPITRE 7. LES MODÈLES

8 nom = models.CharField(max_length=30)
9 produits = models.ManyToManyField(Produit , through='Offre')

10
11 def __unicode__(self):
12 return self.nom
13
14 class Offre(models.Model):
15 prix = models.IntegerField ()
16 produit = models.ForeignKey(Produit)
17 vendeur = models.ForeignKey(Vendeur)
18
19 def __unicode__(self):
20 return "{0} vendu par {1}".format(self.produit , self.

vendeur)

Explications ! Les modèles Produit et Vendeur sont classiques, à l’exception du fait
que nous avons utilisé un ManyToManyField dans Vendeur, au lieu d’une ForeignKey
ou de OneToOneField comme précédemment. La nouveauté, en revanche, est bien le
troisième modèle : Offre. C’est celui-ci qui fait le lien entre Produit et Vendeur et
permet d’ajouter des informations supplémentaires sur la liaison (ici le prix, caractérisé
par un IntegerField qui enregistre un nombre).

Un ManyToManyField va toujours créer une table intermédiaire qui enregistrera les
clés étrangères des différents objets des modèles associés. Nous pouvons soit laisser
Django s’en occuper tout seul, soit la créer nous-mêmes pour y ajouter des attributs
supplémentaires (pour rappel, ici nous ajoutons le prix). Dans ce deuxième cas, il faut
spécifier le modèle faisant la liaison via l’argument through du ManyToManyField et
ne surtout pas oublier d’ajouter des ForeignKey vers les deux modèles qui seront liés.

Créez les tables via syncdb et lancez un shell. Enregistrons un vendeur et deux pro-
duits :

1 >>> from blog.models import Vendeur , Produit , Offre
2 >>> vendeur = Vendeur.objects.create(nom="Carouf")
3 >>> p1 = Produit.objects.create(nom="Lait")
4 >>> p2 = Produit.objects.create(nom="Farine")

Désormais, la gestion du ManyToMany se fait de deux manières différentes. Soit nous
spécifions manuellement la table intermédiaire, soit nous laissons Django le faire. Étant
donné que nous avons opté pour la première méthode, tout ce qu’il reste à faire, c’est
créer un nouvel objet Offre qui reprend le vendeur, le produit et son prix :

1 >>> o1 = Offre.objects.create(vendeur=vendeur , produit=p1, prix
=10)

2 >>> o2 = Offre.objects.create(vendeur=vendeur , produit=p2, prix
=42)

Si nous avions laissé Django générer automatiquement la table, il aurait fallu procéder
ainsi :

1 vendeur.produits.add(p1 ,p2)

70

LES MODÈLES DANS LES VUES

Pour supprimer une liaison entre deux objets, deux méthodes se présentent encore. Avec
une table intermédiaire spécifiée manuellement, il suffit de supprimer l’objet faisant la
liaison (supprimer un objet Offre ici), autrement nous utilisons une autre méthode du
ManyToManyField :

1 vendeur.produits.remove(p1) # Nous avons supprimé p1 , il ne
reste plus que p2 qui est lié au vendeur

Ensuite, pour accéder aux objets du modèle source (possédant la déclaration du Many‌
ToManyField, ici Vendeur) associés au modèle destinataire (ici Produit), rien de plus
simple, nous obtenons à nouveau un QuerySet :

1 >>> vendeur.produits.all()
2 [<Produit: Lait >, <Produit: Farine >]

Encore une fois, toutes les méthodes des QuerySet (filter, exclude, order_by,
reverse...) sont également accessibles.

Comme pour les ForeignKey, une relation inverse s’est créée :

1 >>> p1.vendeur_set.all()
2 [<Vendeur: Carouf >]

Pour rappel, il est également possible avec des ManyToMany de modifier le nom de la
variable faisant la relation inverse via l’argument related_name.

Accessoirement, si nous souhaitons accéder aux valeurs du modèle intermédiaire (ici
Offre), il faut procéder de manière classique :

1 >>> Offre.objects.get(vendeur=vendeur , produit=p1).prix
2 10

Finalement, pour supprimer toutes les liaisons d’un ManyToManyField, que la table
intermédiaire soit générée automatiquement ou manuellement, nous pouvons appeler
la méthode clear :

1 >>> vendeur.produits.clear ()
2 >>> vendeur.produits.all()
3 []

Et tout a disparu !

Les modèles dans les vues

Nous avons vu comment utiliser les modèles dans la console, et d’une manière plutôt
théorique. Nous allons ici introduire les modèles dans un autre milieu plus utile : les
vues.

71

CHAPITRE 7. LES MODÈLES

Afficher les articles du blog

Pour afficher les articles de notre blog, il suffit de reprendre une de nos requêtes pré-
cédentes, et l’incorporer dans une vue. Dans notre template, nous ajouterons un lien
vers notre article pour pouvoir le lire en entier. Le problème qui se pose ici, et que nous
n’avons pas soulevé avant, est le choix d’un identifiant. En effet, comment passer dans
l’URL une information facile à transcrire pour désigner un article particulier ?

En réalité, nos modèles contiennent plus d’attributs et de champs SQL que nous en
déclarons. Nous pouvons le remarquer depuis la commande python manage.py sql
blog, qui renvoie la structure SQL des tables créées :
1 BEGIN;
2 CREATE TABLE "blog_categorie" (
3 "id" integer NOT NULL PRIMARY KEY ,
4 "nom" varchar(30) NOT NULL
5)
6 ;
7 CREATE TABLE "blog_article" (
8 "id" integer NOT NULL PRIMARY KEY ,
9 "titre" varchar(100) NOT NULL ,

10 "auteur" varchar(42) NOT NULL ,
11 "contenu" text NOT NULL ,
12 "date" datetime NOT NULL ,
13 "categorie_id" integer NOT NULL REFERENCES "blog_categorie"

("id")
14)
15 ;
16 COMMIT;

Note : nous n’avons sélectionné ici que les modèles Categorie et Article.

Chaque table contient les attributs définis dans le modèle, mais également un champ
id qui est un nombre auto-incrémenté (le premier article aura l’ID 1, le deuxième
l’ID 2, etc.), et donc unique ! C’est ce champ qui sera utilisé pour désigner un article
particulier. Passons à quelque chose de plus concret, voici un exemple d’application :
1 from django.http import Http404
2 from django.shortcuts import render
3 from blog.models import Article
4
5 def accueil(request):
6 """ Afficher tous les articles de notre blog """
7 articles = Article.objects.all() # Nous sélectionnons tous

nos articles
8 return render(request , 'blog/accueil.html', {'

derniers_articles ':articles })
9

10 def lire(request , id):
11 """ Afficher un article complet """
12 pass # Le code de cette fonction est donné un peu plus loin

.

72

LES MODÈLES DANS LES VUES

1 urlpatterns = patterns('blog.views',
2 url(r'^$', 'accueil '),
3 url(r'^article /(?P<id >\d+)$', 'lire'),
4)

1 <h1>Bienvenue sur le blog des crêpes bretonnes !</h1>
2
3 {% for article in derniers_articles %}
4 <div class="article">
5 <h3 >{{ article.titre }}</h3>
6 <p>{{ article.contenu|truncatewords_html:80 }}</p>
7 <p>

Lire la suite
8 </div >
9 {% empty %}

10 <p>Aucun article.</p>
11 {% endfor %}

Nous récupérons tous les articles via la méthode objects.all() et nous renvoyons
la liste au template. Dans le template, il n’y a rien de fondamentalement nouveau
non plus : nous affichons un à un les articles. Le seul point nouveau est celui que
nous avons cité précédemment : nous faisons un lien vers l’article complet, en jouant
avec le champ id de la table SQL. Si vous avez correctement suivi le sous-chapitre
sur les manipulations d’entrées et tapé nos commandes, vous devriez avoir un article
enregistré.

Afficher un article précis

L’affichage d’un article précis est plus délicat : il faut vérifier que l’article demandé
existe, et renvoyer une erreur 404 si ce n’est pas le cas. Notons déjà qu’il n’y a pas
besoin de vérifier si l’ID précisé est bel et bien un nombre, cela est déjà spécifié dans
urls.py.

Une vue possible est la suivante :

1 def lire(request , id):
2 try:
3 article = Article.objects.get(id=id)
4 except Article.DoesNotExist:
5 raise Http404
6
7 return render(request , 'blog/lire.html', {'article ':article

})

C’est assez verbeux, or les développeurs Django sont très friands de raccourcis. Un
raccourci particulièrement utile ici est get_object_or_404, permettant de récupérer
un objet selon certaines conditions, ou renvoyer la page d’erreur 404 si aucun objet n’a
été trouvé. Le même raccourci existe pour obtenir une liste d’objets : get_list_or_404.

1 # Il faut ajouter l'import get_object_or_404 , attention !

73

CHAPITRE 7. LES MODÈLES

2 from django.shortcuts import render , get_object_or_404
3
4 def lire(request , id):
5 article = get_object_or_404(Article , id=id)
6 return render(request , 'blog/lire.html', {'article ':article

})

Voici le template lire.html associé à la vue :

1 <h1 >{{ article.titre }} dans {{ article.
categorie.nom }}</h1 >

2 <p class="infos">Rédigé par {{ article.auteur }}, le {{ article
.date|date:"DATE_FORMAT" }}</p>

3 <div class="contenu" >{{ article.contenu|linebreaks }}</div >

Ce qui nous donne la figure 7.3.

Figure 7.3 – À cette adresse, la vue de notre article (l’ID à la fin est variable, atten-
tion) : http://127.0.0.1:8000/blog/article/2

Des URL plus esthétiques

Comme vous pouvez le voir, nos URL contiennent pour le moment un ID permettant de
déterminer quel article il faut afficher. C’est relativement pratique, mais cela a l’incon-
vénient de ne pas être très parlant pour l’utilisateur. Pour remédier à cela, nous voyons
de plus en plus fleurir sur le web des adresses contenant le titre de l’article réécrit. Par
exemple : http://monsite.fr/article/la-nouvelle-version-de-django-est-sor
tie. Nous pouvons y identifier la chaîne « la-nouvelle-version-de-django-est-sortie » qui
nous permet de savoir de quoi parle le lien, sans même avoir cliqué dessus. Cette chaîne
est couramment appelée un slug. Et pour définir ce terme barbare, rien de mieux que
Wikipédia :

74

LES MODÈLES DANS LES VUES

Un slug est en journalisme un label court donné à un article publié,
ou en cours d’écriture. Il permet d’identifier l’article tout au long de sa
production et dans les archives. Il peut contenir des informations sur l’état
de l’article, afin de les catégoriser.

Nous allons intégrer la même chose à notre système de blog. Pour cela, il existe un
type de champ un peu spécial dans les modèles : le SlugField. Il permet de stocker
une chaîne de caractères, d’une certaine taille maximale. Ainsi, notre modèle devient
le suivant :

1 class Article(models.Model):
2 titre = models.CharField(max_length=100)
3 slug = models.SlugField(max_length=100)
4 auteur = models.CharField(max_length=42)
5 contenu = models.TextField(null=True)
6 date = models.DateTimeField(auto_now_add=True , auto_now=

False , verbose_name="Date de parution")
7
8 def __unicode__(self):
9 return self.titre

N’oubliez pas de mettre à jour la structure de votre table, comme nous l’avons déjà
expliqué précédemment, et de créer une nouvelle entrée à partir de manage.py shell !

Désormais, nous pouvons aisément ajouter notre slug dans l’URL, en plus de l’ID lors
de la construction d’une URL. Nous pouvons par exemple utiliser des URL comme
celle-ci : /blog/article/1-titre-de-l-article. La mise en œuvre est également
rapide à mettre en place :

1 urlpatterns = patterns('blog.views',
2 url(r'^/$', 'accueil '),
3 url(r'^article /(?P<id >\d+) -(?P<slug >.+)$', 'lire'),
4)

1 from django.shortcuts import render , get_object_or_404
2
3 def lire(request , id , slug):
4 article = get_object_or_404(Article , id=id, slug=slug)
5 return render(request , 'blog/lire.html', {'article ':article

})

1 <p><a href="{% url "blog.views.lire" article.id article.slug %}
">Lire la suite

Il existe également des sites qui n’utilisent qu’un slug dans les adresses. Dans
ce cas, il faut faire attention à avoir des slugs uniques dans votre base, ce
qui n’est pas forcément le cas avec notre modèle ! Si vous créez un article
« Bonne année » en 2012, puis un autre avec le même titre l’année suivante,
ils auront le même slug. Il existe cependant des snippets qui contournent ce
souci.

75

CHAPITRE 7. LES MODÈLES

B

�

�
	Voir les snippets

Code web : 755094
L’inconvénient ici est qu’il faut renseigner pour le moment le slug à la main à la
création d’un article. Nous verrons au chapitre suivant qu’il est possible d’automatiser
son remplissage.

En résumé

– Un modèle représente une table dans la base de données et ses attributs corres-
pondent aux champs de la table.

– Tout modèle Django hérite de la classe mère Model incluse dans django.db.models.
– Chaque attribut du modèle est typé et décrit le contenu du champ, en fonction de
la classe utilisée : CharField, DateTimeField, IntegerField. . .

– Les requêtes à la base de données sur le modèle Article peuvent être effectuées
via des appels de méthodes sur Article.objects, tels que all(), filter(nom="Un
nom") ou encore order_by(’date’).

– L’enregistrement et la mise à jour d’articles dans la base de données se fait par la
manipulation d’objets de la classe Article, et via l’appel à la méthode save().

– Deux modèles peuvent être liés ensemble par le principe des clés étrangères. La
relation dépend cependant des contraintes de multiplicité qu’il faut respecter : One‌
ToOneField, ManyToManyField.

– Il est possible d’afficher les attributs d’un objet dans un template de la même façon
qu’en Python via des appels du type article.nom. Il est également possible d’itérer
une liste d’objets, pour afficher une liste d’articles par exemple.

76

http://www.siteduzero.com/codeweb/755094

Chapitre 8
L’administration

Difficulté :

S ur un bon nombre de sites, l’interface d’administration est un élément capital à ne
pas négliger lors du développement. C’est cette partie qui permet en effet de gérer les
diverses informations disponibles : les articles d’un blog, les comptes utilisateurs, etc.

Un des gros points forts de Django est que celui-ci génère de façon automatique l’admi-
nistration en fonction de vos modèles. Celle-ci est personnalisable à souhait en quelques
lignes et est très puissante.

Nous verrons dans ce chapitre comment déployer l’administration et la personnaliser.

77

CHAPITRE 8. L’ADMINISTRATION

Mise en place de l’administration

Les modules django.contrib

L’administration Django est optionnelle : il est tout à fait possible de développer un
site sans l’utiliser. Pour cette raison, elle est placée dans le module django.contrib,
contenant un ensemble d’extensions fournies par Django, réutilisables dans n’importe
quel projet. Ces modules sont bien pensés et vous permettent d’éviter de réinventer
la roue à chaque fois. Nous allons étudier ici le module django.contrib.admin qui
génère l’administration. Il existe toutefois bien d’autres modules, dont certains que
nous aborderons par la suite : django.contrib.messages (gestion de messages destinés
aux visiteurs), django.contrib.auth (système d’authentification et de gestion des
utilisateurs), etc.

Accédons à cette administration !

Import des modules

Ce module étant optionnel, il est nécessaire d’ajouter quelques lignes dans notre fichier
de configuration pour pouvoir en profiter. Ouvrons donc notre fichier settings.py.
Comme vu précédemment, la variable INSTALLED_APPS permet à Django de savoir
quels sont les modules à charger au démarrage du serveur. Si django.contrib.admin
n’apparaît pas, ajoutez-le (l’ordre dans la liste n’a pas d’importance). L’administration
nécessite toutefois quelques dépendances pour fonctionner, également fournies dans
django.contrib. Ces dépendances sont :

– django.contrib.auth
– django.contrib.contenttypes
– django.contrib.sessions

qui sont normalement incluses de base dans INSTALLED_APPS. Au final, vous devriez
avoir une variable INSTALLED_APPS qui ressemble à ceci :

1 INSTALLED_APPS = (
2 'django.contrib.auth',
3 'django.contrib.contenttypes ',
4 'django.contrib.sessions ',
5 'django.contrib.sites',
6 'django.contrib.messages ',
7 'django.contrib.staticfiles ',
8 'blog', # Nous avions ajouté celui -ci lors de l'ajout de l'

application
9 # Uncomment the next line to enable the admin:

10 'django.contrib.admin',
11 # Uncomment the next line to enable admin documentation:
12 # 'django.contrib.admindocs ',
13)

78

MISE EN PLACE DE L’ADMINISTRATION

Finalement, le module admin nécessite aussi l’import de middlewares, normalement
inclus par défaut également :

– django.middleware.common.CommonMiddleware
– django.contrib.sessions.middleware.SessionMiddleware
– django.contrib.auth.middleware.AuthenticationMiddleware

Sauvegardez le fichier settings.py. Désormais, lors du lancement du serveur, le module
contenant l’administration sera importé.

Mise à jour de la base de données

Si jamais le module django.contrib.auth était déjà inclus dans votre INS‌
TALLED_APPS lors de votre premier syncdb (ce qui est le cas avec la confi-
guration livrée par défaut), vous pouvez sauter cette étape.

Pour fonctionner, il faut créer de nouvelles tables dans la base de données, qui serviront
à enregistrer les actions des administrateurs, définir les droits de chacun, etc. Pour
ce faire, il faut procéder comme avec les modèles et utiliser la commande suivante :
python manage.py syncdb. À la première exécution, cette commande vous demandera
de renseigner des informations pour créer un compte super-utilisateur, qui sera au
début le seul compte à pouvoir accéder à l’administration. Cette opération commence
notamment par la directive suivante :

You just installed Django ’s auth system , which means you don ’t
have any superusers defined.

Répondez yes et insérez les informations utilisateur que Django vous demande.

Si vous sautez cette étape, il sera toujours possible de (re)créer ce compte via la com-
mande python manage.py createsuperuser.

Intégration à notre projet : définissons-lui une adresse

Enfin, tout comme pour nos vues, il est nécessaire de dire au serveur « Quand j’appelle
cette URL, redirige-moi vers l’administration. » En effet, pour l’instant nous avons bel
et bien importé le module, mais nous ne pouvons pas encore y accéder.

Comme pour les vues, cela se fait à partir d’un urls.py. Ouvrez le fichier crepes_breto
nnes/urls.py. Par défaut, Django a déjà indiqué plusieurs lignes pour l’administration,
mais celles-ci sont commentées. Au final, après avoir décommenté ces lignes, votre fichier
urls.py devrait ressembler à ceci :

1 from django.conf.urls import patterns , include , url
2
3 # Uncomment the next two lines to enable the admin:
4 from django.contrib import admin
5 admin.autodiscover ()

79

CHAPITRE 8. L’ADMINISTRATION

6
7 urlpatterns = patterns('',
8 # D'autres éventuelles directives.
9 # Uncomment the next line to enable the admin:

10 url(r'^admin/', include(admin.site.urls)),
11)

Nous voyons que par défaut, l’administration sera disponible à l’adresse http://localh
ost:8000/admin/. Une fois les lignes décommentées, lancez le serveur Django (ou
relancez-le s’il est déjà lancé). Vous pouvez dès lors accéder à l’administration de-
puis l’URL définie (voir la figure 8.1), il suffira juste de vous connecter avec le nom
d’utilisateur et le mot de passe que vous avez spécifiés lors du syncdb ou createsuper‌
user.

Figure 8.1 – L’écran de connexion de l’administration

Première prise en main

Une fois que vous avez saisi vos identifiants de super-utilisateur, vous devez arriver sur
une page semblable à la figure 8.2.

C’est encore un peu vide, mais ne vous inquiétez pas, nous allons bientôt pouvoir
manipuler nos modèles Article et Catégorie, rédigés dans le chapitre précédent. Tout
d’abord, faisons un petit tour des fonctionnalités disponibles. Sur cette page, vous avez
la liste des modèles que vous pouvez gérer. Ces modèles sont au nombre de 3 : Groupes,
Utilisateurs et Sites. Ce sont les modèles par défaut.

Chaque modèle possède ensuite une interface qui permet de réaliser les 4 opérations
de base « CRUD » : Create, Read, Update, Delete (littéralement « créer, lire, mettre

80

PREMIÈRE PRISE EN MAIN

Figure 8.2 – Accueil de l’administration

à jour, supprimer »). Pour ce faire, allons dans l’administration des comptes sur notre
site, en cliquant sur Utilisateurs. Pour le moment, vous n’avez logiquement qu’un
compte dans la liste, le vôtre, ainsi que vous pouvez le voir sur la figure 8.3.

Figure 8.3 – Liste des utilisateurs

C’est à partir d’ici que nous pouvons constater la puissance de cette administration :
sans avoir écrit une seule ligne de code, il est possible de manipuler la liste des utili-
sateurs dans tous les sens : la filtrer selon certains paramètres, la trier avec certains
champs, effectuer des actions sur certaines lignes, etc. Pour essayer ces opérations, nous
allons d’abord créer un deuxième compte utilisateur. Il suffit de cliquer sur le bouton
Ajouter utilisateur, disponible en haut à droite. Le premier formulaire vous de-

81

CHAPITRE 8. L’ADMINISTRATION

mande de renseigner le nom d’utilisateur et le mot de passe. Nous pouvons déjà remar-
quer sur la figure 8.4 que les formulaires peuvent gérer des contraintes, et l’affichage
d’erreurs.

Figure 8.4 – Formulaire de création de comptes, après le validateur avec erreur

Une fois cela validé, vous accédez directement à un formulaire plus complet, permettant
de renseigner plus d’informations sur l’utilisateur qui vient d’être créé : ses informations
personnelles, mais aussi ses droits sur le site. Django fournit de base une gestion précise
des droits, par groupe et par utilisateur, offrant souplesse et rapidité dans l’attribution
des droits. Ainsi, ici nous pouvons voir qu’il est possible d’assigner un ou plusieurs
groupes à l’utilisateur, et des permissions spécifiques. D’ailleurs, vous pouvez créer un
groupe sans quitter cette fenêtre en cliquant sur le « + » vert à côté des choix (qui
est vide chez vous pour le moment) ! Également, deux champs importants sont Statut
équipe et Statut super-utilisateur : le premier permet de définir si l’utilisateur
peut accéder au panel d’administration, et le second de donner « les pleins pouvoirs »
à l’utilisateur (voir la figure 8.5).

Une fois que vous avez fini de gérer l’utilisateur, vous êtes redirigés vers la liste de
tout à l’heure, avec une ligne en plus. Désormais, vous pouvez tester le tri, et les filtres
qui sont disponibles à la droite du tableau ! Nous verrons d’ailleurs plus tard comment
définir les champs à afficher, quels filtres utiliser, etc.

En définitive, pour finir ce rapide tour des fonctionnalités, vous avez peut-être remarqué
la présence d’un bouton Historique en haut de chaque fiche utilisateur ou groupe. Ce
bouton est très pratique, puisqu’il vous permet de suivre les modifications apportées,
et donc de voir rapidement l’évolution de l’objet sur le site. En effet, chaque action
effectuée via l’administration est inscrite dans un journal des actions. De même, sur
l’index vous avez la liste de vos dernières actions, vous permettant de voir ce que vous
avez fait récemment, et d’accéder rapidement aux liens, en cas d’erreur par exemple
(voir la figure 8.6).

82

PREMIÈRE PRISE EN MAIN

Figure 8.5 – Exemple d’édition des permissions, ici j’ai créé deux groupes avant d’édi-
ter l’utilisateur

Figure 8.6 – Historique des modifications d’un objet utilisateur

83

CHAPITRE 8. L’ADMINISTRATION

Administrons nos propres modèles

Pour le moment, nous avons vu comment manipuler les données des objets de base
de Django, ceux concernant les utilisateurs. Il serait pratique désormais de faire de
même avec nos propres modèles. Comme dit précédemment, l’administration est auto-
générée : vous n’aurez pas à écrire beaucoup de lignes pour obtenir le même résultat que
ci-avant. En réalité, quatre lignes suffisent : créez un fichier admin.py dans le répertoire
blog/ et insérez ces lignes :

1 from django.contrib import admin
2 from blog.models import Categorie , Article
3
4 admin.site.register(Categorie)
5 admin.site.register(Article)

Ici, nous indiquons à Django de prendre en compte les modèles Article et Catégorie
dans l’administration. Rafraîchissez la page (relancez le serveur Django si nécessaire) et
vous devez voir apparaître une nouvelle section, pour notre blog, semblable à la figure
8.7.

Figure 8.7 – La deuxième section nous permet enfin de gérer notre blog !

Les fonctionnalités sont les mêmes que celles pour les utilisateurs : nous pouvons édi-
ter des articles, des catégories, les supprimer, consulter l’historique, etc. Vous pouvez
désormais créer vos articles depuis cette interface et voir le résultat depuis les vues que
nous avons créées précédemment. Comme vous pouvez le voir, l’administration prend
en compte la clé étrangère de la catégorie.

84

PERSONNALISONS L’ADMINISTRATION

Comment cela fonctionne-t-il ?

Au lancement du serveur, le framework charge le fichier urls.py et tombe sur la ligne
admin.autodiscover(). Cette méthode ira chercher dans chaque application installée
(celles qui sont listées dans INSTALLED_APPS) un fichier admin.py, et si celui-ci existe
exécutera son contenu. Ainsi, si nous souhaitons activer l’administration pour toutes
nos applications, il suffit de créer un fichier admin.py dans chacune, et d’appeler la
méthode register() de admin.site sur chacun de nos modèles. Nous pouvons alors
deviner que le module django.contrib.auth contient son propre fichier admin.py,
qui génère l’administration des utilisateurs et des groupes. De même, le module Site,
que nous avons ignoré depuis le début, fonctionne de la même façon. Ce module sert
à pouvoir faire plusieurs sites, avec le même code. Il est rarement utilisé, et si vous
souhaitez le désactiver, il vous suffit de commenter la ligne 5 du code suivant, dans
votre settings.py :

1 INSTALLED_APPS = (
2 'django.contrib.auth',
3 'django.contrib.contenttypes ',
4 'django.contrib.sessions ',
5 'django.contrib.sites',
6 'django.contrib.messages ',
7 'django.contrib.staticfiles ',
8 # Uncomment the next line to enable the admin:
9 'django.contrib.admin',

10 'blog',
11 # Uncomment the next line to enable admin documentation:
12 # 'django.contrib.admindocs ',
13)

Personnalisons l’administration

Avant tout, créez quelques articles depuis l’administration, si ce n’est déjà fait. Cela
vous permettra de tester tout au long de ce chapitre les différents exemples qui seront
donnés.

Modifier l’aspect des listes

Dans un premier temps, nous allons voir comment améliorer la liste. En effet, pour le
moment, nos listes sont assez vides, comme vous pouvez le constater sur la figure 8.8.

Le tableau ne contient qu’une colonne contenant le titre de notre article. Cette colonne
n’est pas due au hasard : c’est en réalité le résultat de la méthode __unicode__ que
nous avons définie dans notre modèle.

1 class Article(models.Model):
2 titre = models.CharField(max_length=100)
3 auteur = models.CharField(max_length=42)

85

CHAPITRE 8. L’ADMINISTRATION

Figure 8.8 – Notre liste d’articles, avec uniquement le titre comme colonne

4 slug = models.SlugField(max_length=100)
5 contenu = models.TextField ()
6 date = models.DateTimeField(auto_now_add=True , auto_now=

False , verbose_name="Date de parution")
7 categorie = models.ForeignKey(Categorie)
8
9 def __unicode__(self):

10 return self.titre

Ce résultat par défaut est assez utile, mais nous aimerions pouvoir gérer plus facilement
nos articles : les trier selon certains champs, filtrer par catégorie, etc. Pour ce faire, nous
devons créer une nouvelle classe dans notre fichier admin.py, contenant actuellement
ceci :

1 from django.contrib import admin
2 from blog.models import Categorie , Article
3
4 admin.site.register(Categorie)
5 admin.site.register(Article)

Nous allons donc créer une nouvelle classe pour chaque modèle. Notre classe héritera de
admin.ModelAdmin et aura principalement 5 attributs, listés dans le tableau suivant.

Nous pouvons dès lors rédiger notre première classe adaptée au modèle Article :

1 class ArticleAdmin(admin.ModelAdmin):
2 list_display = ('titre', 'auteur ', 'date')
3 list_filter = ('auteur ','categorie ',)

86

PERSONNALISONS L’ADMINISTRATION

Nom de l’attribut Utilité
list_display Liste des champs du modèle à afficher dans le tableau
list_filter Liste des champs à partir desquels nous pourrons fil-

trer les entrées
date_hierarchy Permet de filtrer par date de façon intuitive
ordering Tri par défaut du tableau
search_fields Configuration du champ de recherche

4 date_hierarchy = 'date'
5 ordering = ('date',)
6 search_fields = ('titre', 'contenu ')

Ces attributs définissent les règles suivantes :

– Le tableau affiche les champs titre, auteur et date. Notez que les en-têtes sont
nommés selon leur attribut verbose_name respectif.

– Il est possible de filtrer selon les différents auteurs et la catégorie des articles (menu
de droite).

– L’ordre par défaut est la date de parution, dans l’ordre croissant (du plus ancien au
plus récent).

– Il est possible de chercher les articles contenant un mot, soit dans leur titre, soit dans
leur contenu.

– Enfin, il est possible de voir les articles publiés sur une certaine période (première
ligne au-dessus du tableau).

Désormais, il faut spécifier à Django de prendre en compte ces données pour le mo-
dèle Article. Pour ce faire, modifions la ligne admin.site.register(Article), en
ajoutant un deuxième paramètre :

1 admin.site.register(Article , ArticleAdmin)

Avec ce deuxième argument, Django prendra en compte les règles qui ont été spécifiées
dans la classe ArticleAdmin.

1 from django.contrib import admin
2 from blog.models import Categorie , Article
3
4 class ArticleAdmin(admin.ModelAdmin):
5 list_display = ('titre', 'auteur ', 'date')
6 list_filter = ('auteur ','categorie ',)
7 date_hierarchy = 'date'
8 ordering = ('date',)
9 search_fields = ('titre', 'contenu ')

10
11 admin.site.register(Categorie)
12 admin.site.register(Article , ArticleAdmin)

Vous pouvez maintenant observer le résultat sur la figure 8.9 :

Les différents changements opérés sont désormais visibles. Vous pouvez bien sûr modi-

87

CHAPITRE 8. L’ADMINISTRATION

Figure 8.9 – La même liste, bien plus complète, et plus pratique !

fier selon vos besoins : ajouter le champ Catégorie dans le tableau, changer le tri. . .

Pour terminer, nous allons voir comment créer des colonnes plus complexes. Il peut
arriver que vous ayez envie d’afficher une colonne après un certain traitement. Par
exemple, afficher les 40 premiers caractères de notre article. Pour ce faire, nous allons
devoir créer une méthode dans notre ModelAdmin, qui va se charger de renvoyer ce que
nous souhaitons, et la lier à notre list_display.

Créons tout d’abord notre méthode. Celles de notre ModelAdmin auront toujours la
même structure :

1 def apercu_contenu(self , article):
2 """
3 Retourne les 40 premiers caractères du contenu de l'article
4 S'il y a plus de 40 caractères , il faut ajouter des points

de suspension
5 """
6 text = article.contenu[0:40]
7 if len(article.contenu) > 40:
8 return '%s...' % text
9 else:

10 return text

La méthode prend en argument l’instance de l’article, et nous permet d’accéder à tous
ses attributs. Ensuite, il suffit d’exécuter quelques opérations, puis de renvoyer une
chaîne de caractères. Il faut ensuite intégrer cela dans notre ModelAdmin.

88

PERSONNALISONS L’ADMINISTRATION

Et comment l’ajoute-t-on à notre list_display ?

Il faut traiter la fonction comme un champ. Il suffit donc d’ajouter ’apercu_contenu’
à la liste, Django s’occupe du reste. Pour ce qui est de l’en-tête, il faudra par contre
ajouter une ligne supplémentaire pour spécifier le titre de la colonne :
1 # -*- coding:utf -8 -*-
2 from django.contrib import admin
3 from blog.models import Categorie , Article
4
5 class ArticleAdmin(admin.ModelAdmin):
6 list_display = ('titre', 'categorie ', 'auteur ', 'date', '

apercu_contenu ')
7 list_filter = ('auteur ','categorie ',)
8 date_hierarchy = 'date'
9 ordering = ('date',)

10 search_fields = ('titre', 'contenu ')
11
12 def apercu_contenu(self , article):
13 """
14 Retourne les 40 premiers caractères du contenu de l'

article
15 S'il y a plus de 40 caractères , il faut ajouter des

points de suspension
16 """
17 text = article.contenu[0:40]
18 if len(article.contenu) > 40:
19 return '%s...' % text
20 else:
21 return text
22
23 # En -tête de notre colonne
24 apercu_contenu.short_description = u'Aperçu du contenu '
25
26 admin.site.register(Categorie)
27 admin.site.register(Article , ArticleAdmin)

Nous obtenons notre nouvelle colonne avec les premiers mots de chaque article (voir la
figure 8.10).

Modifier le formulaire d’édition

Nous allons désormais nous occuper du formulaire d’édition. Pour le moment, comme
vous pouvez le voir sur la figure 8.11, nous avons un formulaire affichant tous les
champs, hormis la date de publication (à cause du paramètre auto_now_add=True
dans le modèle).

L’ordre d’apparition des champs dépend actuellement de l’ordre de déclaration dans

89

CHAPITRE 8. L’ADMINISTRATION

Figure 8.10 – La liste des articles est accessible depuis l’administration

Figure 8.11 – Le formulaire d’édition d’un article par défaut

90

PERSONNALISONS L’ADMINISTRATION

notre modèle. Nous allons ici séparer le contenu des autres champs. Tout d’abord,
modifions l’ordre via un nouvel attribut dans notre ModelAdmin : fields. Cet attribut
prend une liste de champs, qui seront affichés dans l’ordre souhaité. Cela nous permettra
de cacher des champs (inutile dans le cas présent) et, bien évidemment, de changer leur
ordre :

1 fields = ('titre', 'slug', 'auteur ', 'categorie ', 'contenu ')

Nous observons peu de changements, à part le champ Catégorie qui est désormais
au-dessus de Contenu (voir la figure 8.12).

Figure 8.12 – Notre formulaire, avec une nouvelle organisation des champs

Pour le moment, notre formulaire est dans un unique fieldset (ensemble de champs).
Conséquence : tous les champs sont les uns à la suite des autres, sans distinction. Nous
pouvons hiérarchiser cela en utilisant un attribut plus complexe que fields. À titre
d’exemple, nous allons mettre les champs titre, auteur et categorie dans un fieldset
et contenu dans un autre.

1 fieldsets = (
2 # Fieldset 1 : meta -info (titre , auteur ...)
3 ('Général', {
4 'classes ': ['collapse ',],
5 'fields ': ('titre', 'slug', 'auteur ', 'categorie ')
6 }),
7 # Fieldset 2 : contenu de l'article
8 ('Contenu de l\'article ', {
9 'description ':u'Le formulaire accepte les balises HTML.

Utilisez -les à bon escient !',
10 'fields ': ('contenu ',)
11 }),
12)

Voyons pas à pas la construction de ce tuple :

1. Nos deux éléments dans le tuple fieldset, qui correspondent à nos deux fieldsets
distincts.

2. Chaque élément contient un tuple contenant exactement deux informations : son
nom, et les informations sur son contenu, sous forme de dictionnaire.

91

CHAPITRE 8. L’ADMINISTRATION

3. Ce dictionnaire contient trois types de données :
(a) fields : liste des champs à afficher dans le fieldset ;
(b) description : une description qui sera affichée en haut du fieldset, avant le

premier champ ;
(c) classes : des classes CSS supplémentaires à appliquer sur le fieldset (par

défaut il en existe trois : wide, extrapretty et collapse).

Si vous mettez en place un fieldset, il faut retirer l’attribut field. C’est soit
l’un, soit l’autre !

Ici, nous avons donc séparé les champs en deux fieldsets et affiché quelques informations
supplémentaires pour aider à la saisie. Au final, nous avons le fichier admin.py suivant :
1 # -*- coding:utf -8 -*-
2 from django.contrib import admin
3 from blog.models import Categorie , Article
4
5 class ArticleAdmin(admin.ModelAdmin):
6
7 # Configuration de la liste d'articles
8 list_display = ('titre', 'categorie ', 'auteur ', 'date')
9 list_filter = ('auteur ','categorie ',)

10 date_hierarchy = 'date'
11 ordering = ('date',)
12 search_fields = ('titre', 'contenu ')
13
14 # Configuration du formulaire d'édition
15 fieldsets = (
16 # Fieldset 1 : meta -info (titre , auteur ...)
17 ('Général', {
18 'classes ': ['collapse ',],
19 'fields ': ('titre', 'slug', 'auteur ', 'categorie ')
20 }),
21 # Fieldset 2 : contenu de l'article
22 ('Contenu de l\'article ', {
23 'description ': u'Le formulaire accepte les balises

HTML. Utilisez -les à bon escient !',
24 'fields ': ('contenu ',)
25 }),
26)
27
28 # Colonnes personnalisées
29 def apercu_contenu(self , article):
30 """
31 Retourne les 40 premiers caractères du contenu de l'

article
32 S'il y a plus de 40 caractères , il faut rajouter des

points de suspension

92

PERSONNALISONS L’ADMINISTRATION

33 """
34 text = article.contenu[0:40]
35 if len(article.contenu) > 40:
36 return '%s...' % text
37 else:
38 return text
39
40 apercu_contenu.short_description = 'Aperçu du contenu '
41
42 admin.site.register(Categorie)
43 admin.site.register(Article , ArticleAdmin)

. . . qui donne la figure 8.13.

Figure 8.13 – Notre formulaire, mieux présenté qu’avant

Si ni le champ fields, ni le champ fieldset ne sont présents, Django
affichera par défaut tous les champs qui ne sont pas des AutoField, et qui
ont l’attribut editable à True (ce qui est le cas par défaut de nombreux
champs). Comme nous l’avons vu, l’ordre des champs sera alors celui du
modèle.

Retour sur notre problème de slug

Souvenez-vous, au chapitre précédent nous avons parlé des slugs, ces chaînes de carac-
tères qui permettent d’identifier un article dans notre URL. Dans notre zone d’admi-
nistration, ce champ est actuellement ignoré. . . Nous souhaitons toutefois le remplir,
mais en plus que cela se fasse automatiquement !

Nous avons notre champ slug que nous pouvons désormais éditer à la main. Mais nous
pouvons aller encore plus loin, en ajoutant une option qui remplit instantanément ce
champ grâce à un script JavaScript. Pour ce faire, il existe un attribut aux classes Mo‌
delAdmin nommé prepopulated_fields. Ce champ a pour principal usage de remplir
les champs de type SlugField en fonction d’un ou plusieurs autres champs :

1 prepopulated_fields = {'slug': ('titre',), }

93

CHAPITRE 8. L’ADMINISTRATION

Ici, notre champ slug est rempli automatiquement en fonction du champ titre. Il est
possible bien entendu de concaténer plusieurs chaînes, si vous voulez par exemple faire
apparaître l’auteur (voir la figure 8.14).

Figure 8.14 – Exemple d’utilisation de prepopulated_fields

En résumé

– L’administration est un outil optionnel : il est possible de ne pas l’utiliser. Une
fois activée, de très nombreuses options sont automatisées, sans qu’il y ait besoin
d’ajouter une seule ligne de code !

– Ce module requiert l’usage de l’authentification, et la création d’un super-utilisateur
afin d’en restreindre l’accès aux personnes de confiance.

– De base, l’administration permet la gestion complète des utilisateurs, de groupes et
des droits de chacun, de façon très fine.

– L’administration d’un modèle créé dans une de nos applications est possible en l’en-
registrant dans le module d’administration, via admin.site.register(MonModele)
dans le fichier admin.py de l’application.

– Il est également possible de personnaliser cette interface pour chaque module, en
précisant ce qu’il faut afficher dans les tableaux de listes, ce qui peut être édité, etc.

94

Chapitre 9
Les formulaires

Difficulté :

S i vous avez déjà fait du web auparavant, vous avez forcément dû concevoir des
formulaires. Entre le code HTML à réaliser, la validation des données entrées par
l’utilisateur et la mise à jour de celles-ci dans la base de données, réaliser un formulaire

était un travail fastidieux. Heureusement, Django est là pour vous simplifier la tâche !

95

CHAPITRE 9. LES FORMULAIRES

Créer un formulaire

La déclaration d’un formulaire est très similaire à la déclaration d’un modèle. Il s’agit
également d’une classe héritant d’une classe mère fournie par Django. Les attributs eux
aussi correspondent aux champs du formulaire.

Si les modèles ont leurs fichiers models.py, les formulaires n’ont malheureusement pas
la chance d’avoir un endroit qui leur est défini. Cependant, toujours dans une optique
de code structuré, nous vous invitons à créer dans chaque application (bien que pour
le moment nous n’en ayons qu’une) un fichier forms.py dans lequel nous créerons nos
formulaires.

Un formulaire hérite donc de la classe mère Form du module django.forms. Tous les
champs sont bien évidemment également dans ce module et reprennent la plupart du
temps les mêmes noms que ceux des modèles. Voici un bref exemple de formulaire de
contact :

1 #-*- coding: utf -8 -*-
2 from django import forms
3
4 class ContactForm(forms.Form):
5 sujet = forms.CharField(max_length=100)
6 message = forms.CharField(widget=forms.Textarea)
7 envoyeur = forms.EmailField(label=u"Votre adresse mail")
8 renvoi = forms.BooleanField(help_text=u"Cochez si vous

souhaitez obtenir une copie du mail envoyé.", required=
False)

Toujours très similaire aux formulaires, un champ peut avoir des arguments qui lui
sont propres (ici max_length pour sujet), ou avoir des arguments génériques à tous
les champs (ici label, help_text, widget et required).

Un CharField enregistre toujours du texte. Notons une différence avec le CharField
des modèles : l’argument max_length devient optionnel. L’attribut message qui est
censé recueillir de grands et longs textes est, lui, identique.

Ne devrait-on pas utiliser un TextField comme dans les modèles pour mes‌
sage dans ce cas ?

Django ne propose pas de champ TextField similaire aux modèles. Tant que nous
recueillons du texte, il faut utiliser un CharField. En revanche, il semble logique que
les boîtes de saisie pour le sujet et pour le message ne doivent pas avoir la même
taille ! Le message est souvent beaucoup plus long. Pour ce faire, Django propose en
quelque sorte de « maquiller » les champs du formulaire grâce aux widgets. Ces derniers
transforment le code HTML pour le rendre plus adapté à la situation actuelle. Nous
avons utilisé ici le widget forms.Textarea pour le champ message. Celui-ci fera en
sorte d’agrandir considérablement la boîte de saisie pour le champ et la rendre plus
confortable pour le visiteur.

96

UTILISER UN FORMULAIRE DANS UNE VUE

Il existe bien d’autres widgets (tous également dans django.forms) : PasswordIn‌
put(pour cacher le mot de passe), DateInput(pour entrer une date), CheckboxIn‌
put(pour avoir une case à cocher), etc. N’hésitez pas à consulter la documentation
Django pour avoir une liste exhaustive !

Il est très important de comprendre la logique des formulaires. Lorsque nous choisissons
un champ, nous le faisons selon le type de données qu’il faut recueillir (du texte, un
nombre, une adresse e-mail, une date. . .). C’est le champ qui s’assurera que ce qu’a
entré l’utilisateur est valide. En revanche, tout ce qui se rapporte à l’apparence du
champ concerne les widgets.

Généralement, il n’est pas utile de spécifier des widgets pour tous les champs. Par
exemple, le BooleanField, qui recueille un booléen, utilisera par défaut le widget
CheckboxInput et l’utilisateur verra donc une boîte à cocher. Néanmoins, si cela ne
vous convient pas pour une quelconque raison, vous pouvez toujours changer.

Revenons rapidement à notre formulaire : l’attribut emailcontient un EmailField. Ce
dernier s’assurera que l’utilisateur a bel et bien envoyé une adresse e-mail correcte et
le BooleanField de renvoi affichera une boîte à cocher, comme nous l’avons expliqué
ci-dessus.

Ces deux derniers champs possèdent des arguments génériques : label, help_text et
required. label permet de modifier le nom de la boîte de saisie qui est généralement
défini selon le nom de la variable. help_text permet d’ajouter un petit texte d’aide
concernant le champ. Celui-ci apparaîtra généralement à droite ou en bas du champ.
Finalement, required permet d’indiquer si le champ doit obligatoirement être rempli
ou non. Il s’agit d’une petite exception lorsque cet argument est utilisé avec Boolean‌
Field, car si la boîte n’est pas cochée, Django considère que le champ est invalide car
laissé « vide ». Cela oblige l’utilisateur à cocher la boîte, et ce n’est pas ce que nous
souhaitons ici.

La documentation officielle liste tous les champs et leurs options. N’hésitez pas à y
jeter un coup d’œil si vous ne trouvez pas le champ qu’il vous faut.

B

�

�
	Voir la documentation

Code web : 332960

Utiliser un formulaire dans une vue

Nous avons vu comment créer un formulaire. Passons à la partie la plus intéressante :
utiliser celui-ci dans une vue.

Avant tout, il faut savoir qu’il existe deux types principaux de requêtes HTTP (HTTP
est le protocole, le « langage », que nous utilisons pour communiquer sur le web).
Le type de requête le plus souvent utilisé est le type GET. Il demande une page et
le serveur web la lui renvoie, aussi simplement que cela. Le deuxième type, qui nous
intéresse le plus ici, est POST. Celui-ci va également demander une page du serveur, mais
va en revanche aussi envoyer des données à celui-ci, généralement depuis un formulaire.
Donc, pour savoir si l’utilisateur a complété un formulaire ou non, nous nous fions à la

97

http://www.siteduzero.com/codeweb/332960

CHAPITRE 9. LES FORMULAIRES

requête HTTP qui nous est transmise :

– GET : pas de formulaire envoyé ;
– POST : formulaire complété et envoyé.

L’attribut method de l’objet request passé à la vue indique le type de requête (il peut
être mis à GET ou POST). Les données envoyées par l’utilisateur via une requête POST sont
accessibles sous forme d’un dictionnaire depuis request.POST. C’est ce dictionnaire que
nous passerons comme argument lors de l’instanciation du formulaire pour vérifier si
les données sont valides ou non.

Une vue qui utilise un formulaire suit la plupart du temps une certaine procédure.
Cette procédure, bien que non officielle, est reprise par la majorité des développeurs
Django, probablement en raison de son efficacité.

La voici :

1 from blog.forms import ContactForm
2
3 def contact(request):
4 if request.method == 'POST': # S'il s'agit d'une requête

POST
5 form = ContactForm(request.POST) # Nous reprenons les

données
6
7 if form.is_valid (): # Nous vérifions que les données

envoyées sont valides
8
9 # Ici nous pouvons traiter les données du

formulaire
10 sujet = form.cleaned_data['sujet']
11 message = form.cleaned_data['message ']
12 envoyeur = form.cleaned_data['envoyeur ']
13 renvoi = form.cleaned_data['renvoi ']
14
15 # Nous pourrions ici envoyer l'e-mail grâce aux

données que nous venons de récupérer
16
17 envoi = True
18
19 else: # Si ce n'est pas du POST , c'est probablement une

requête GET
20 form = ContactForm () # Nous créons un formulaire vide
21
22 return render(request , 'blog/contact.html', locals ())

1 url(r'^contact/$', 'contact '),

Si le formulaire est valide, un nouvel attribut de l’objet form est apparu, il nous per-
mettra d’accéder aux données : cleaned_data. Ce dernier va renvoyer un dictionnaire
contenant comme clés les noms de vos différents champs (les mêmes noms qui ont été
renseignés dans la déclaration de la classe), et comme valeurs les données validées de

98

UTILISER UN FORMULAIRE DANS UNE VUE

chaque champ. Par exemple, nous pourrions accéder au sujet du message ainsi :

1 print form.cleaned_data["sujet"]
2 "Le super sujet qui a été envoyé"

Côté utilisateur, cela se passe en trois étapes :

1. Le visiteur arrive sur la page, complète le formulaire et l’envoie.
2. Si le formulaire est faux, nous retournons la même page tant que celui-ci n’est

pas correct.
3. Si le formulaire est correct, nous le redirigeons vers une autre page.

Il est important de remarquer que si le formulaire est faux il n’est pas remis à zéro !
Un formulaire vide est créé lorsque la requête est de type GET. Par la suite, elles seront
toujours de type POST. Dès lors, si les données sont fausses, nous retournons encore une
fois le template avec le formulaire invalide. Celui-ci contient encore les données fausses
et des messages d’erreur pour aider l’utilisateur à le corriger.

Si nous avons fait la vue, il ne reste plus qu’à faire le template. Ce dernier est très
simple à faire, car Django va automatiquement générer le code HTML des champs du
formulaire. Il faut juste spécifier une balise form et un bouton. Exemple :

1 {% if envoi %}Votre message a bien été envoyé !{% endif %}
2
3 <form action="{% url "blog.views.contact" %}" method="post" >{%

csrf_token %}
4 {{ form.as_p }}
5 <input type="submit" value="Submit" />
6 </form >

Chaque formulaire (valide ou non) possède plusieurs méthodes qui permettent de géné-
rer le code HTML des champs du formulaire de plusieurs manières. Ici, il va le générer
sous la forme d’un paragraphe (as_p, p pour la balise <p>), mais il pourrait tout aussi
bien le générer sous la forme de tableau grâce à la méthode as_table ou sous la forme
de liste grâce à as_ul. Utilisez ce que vous pensez être le plus adapté. D’ailleurs, ces
méthodes ne créent pas seulement le code HTML des champs, mais ajoutent aussi les
messages d’erreur lorsqu’un champ n’est pas correct !

Dans le cas actuel, le code suivant sera généré (avec un formulaire vide) :

1 <p><label for="id_sujet">Sujet:</label > <input id="id_sujet"
type="text" name="sujet" maxlength="100" /></p>

2 <p><label for="id_message">Message:</label > <textarea id="
id_message" rows="10" cols="40" name="message"></textarea ></
p>

3 <p><label for="id_envoyeur">Votre adresse mail:</label > <input
type="text" name="envoyeur" id="id_envoyeur" /></p>

4 <p><label for="id_renvoi">Renvoi:</label > <input type="checkbox
" name="renvoi" id="id_renvoi" />
Cochez si vous souhaitez obtenir une copie du mail envoyé.</
span ></p>

99

CHAPITRE 9. LES FORMULAIRES

Et voici à la figure 9.1 l’image du rendu (bien entendu, libre à vous de l’améliorer avec
un peu de CSS).

Figure 9.1 – Rendu du formulaire

C’est quoi ce tag {% csrf_token %} ?

Ce tag est une fonctionnalité très pratique de Django. Il empêche les attaques de
type CSRF (Cross-site request forgery). Imaginons qu’un de vos visiteurs obtienne
l’URL qui permet de supprimer tous les articles de votre blog. Heureusement, seul
un administrateur peut effectuer cette action. Votre visiteur peut alors tenter de vous
rediriger vers cette URL à votre insu, ce qui supprimerait tous vos articles ! Pour éviter
ce genre d’attaques, Django va sécuriser le formulaire en y ajoutant un code unique et
caché qu’il gardera de côté. Lorsque l’utilisateur renverra le formulaire, il va également
renvoyer le code avec. Django pourra alors vérifier si le code envoyé est bel et bien le
code qu’il a généré et mis de côté. Si c’est le cas, le framework sait que l’administrateur
a vu le formulaire et qu’il est sûr de ce qu’il fait !

Créons nos propres règles de validation

Imaginons que nous, administrateurs du blog sur les crêpes bretonnes, recevions souvent
des messages impolis des fanatiques de la pizza italienne depuis le formulaire de contact.
Chacun ses goûts, mais nous avons d’autres chats à fouetter !

Pour éviter de recevoir ces messages, nous avons eu l’idée d’intégrer un filtre dans
notre formulaire pour que celui-ci soit invalide si le message contient le mot « pizza ».
Heureusement pour nous, il est facile d’ajouter de nouvelles règles de validation sur
un champ. Il y a deux méthodes : soit le filtre ne s’applique qu’à un seul champ et ne
dépend pas des autres, soit le filtre dépend des données des autres champs.

100

CRÉONS NOS PROPRES RÈGLES DE VALIDATION

Pour la première méthode (la plus simple), il faut ajouter une méthode à la classe
ContactForm du formulaire dont le nom doit obligatoirement commencer par clean_,
puis être suivi par le nom de la variable du champ. Par exemple, si nous souhaitons
filtrer le champ message, il faut ajouter une méthode semblable à celle-ci :

1 def clean_message(self):
2 message = self.cleaned_data['message ']
3 if "pizza" in message:
4 raise forms.ValidationError("On ne veut pas entendre

parler de pizza !")
5
6 return message # Ne pas oublier de renvoyer le contenu du

champ traité

Nous récupérons le contenu du message comme depuis une vue, en utilisant l’attribut
cleaned_data qui retourne toujours un dictionnaire. Dès lors, nous vérifions si le mes-
sage contient bien le mot « pizza », et si c’est le cas nous retournons une exception avec
une erreur (il est important d’utiliser l’exception forms.ValidationError !). Django
se servira du contenu de l’erreur passée en argument pour indiquer quel champ n’a pas
été validé et pourquoi.

Le rendu HTML nous donne le résultat que vous pouvez observer sur la figure 9.2, avec
des données invalides après traitement du formulaire.

Figure 9.2 – Formulaire avec données invalides

Maintenant, imaginons que nos fanatiques de la pizza italienne se soient adoucis et
que nous ayons décidé d’être moins sévères, nous ne rejetterions que les messages qui
possèdent le mot « pizza » dans le message et dans le sujet (juste parler de pizzas dans
le message serait accepté). Étant donné que la validation dépend de plusieurs champs
en même temps, nous devons écraser la méthode clean héritée de la classe mère Form.
Les choses se compliquent un petit peu :

101

CHAPITRE 9. LES FORMULAIRES

1 def clean(self):
2 cleaned_data = super(ContactForm , self).clean ()
3 sujet = cleaned_data.get('sujet')
4 message = cleaned_data.get('message ')
5
6 if sujet and message: # Est -ce que sujet et message sont

valides ?
7 if "pizza" in sujet and "pizza" in message:
8 raise forms.ValidationError("Vous parlez de pizzas

dans le sujet ET le message ? Non mais ho !")
9

10 return cleaned_data # N'oublions pas de renvoyer les donné
es si tout est OK

La première ligne de la méthode permet d’appeler la méthode clean héritée de Form. En
effet, si nous avons un formulaire d’inscription qui prend l’adresse e-mail de l’utilisateur,
avant de vérifier si celle-ci a déjà été utilisée, il faut laisser Django vérifier si l’adresse
e-mail est valide ou non. Appeler la méthode mère permet au framework de vérifier
tous les champs comme d’habitude pour s’assurer que ceux-ci sont corrects, suite à
quoi nous pouvons traiter ces données en sachant qu’elles ont déjà passé la validation
basique.

La méthode mère clean va également renvoyer un dictionnaire avec toutes les données
valides. Dans notre dernier exemple, si l’adresse e-mail spécifiée était incorrecte, elle
ne sera pas reprise dans le dictionnaire renvoyé. Pour savoir si les valeurs que nous
souhaitons filtrer sont valides, nous utilisons la méthode get du dictionnaire qui renvoie
la valeur d’une clé si elle existe, et renvoie None sinon. Par la suite, nous vérifions que les
valeurs des variables ne sont pas à None (if sujet and message) et nous les traitons
comme d’habitude.

Voici à la figure 9.3 ce que donne le formulaire lorsqu’il ne passe pas la validation que
nous avons écrite.

Il faut cependant remarquer une chose : le message d’erreur est tout en haut et n’est
plus lié aux champs qui n’ont pas passé la vérification. Si sujet et message étaient les
derniers champs du formulaire, le message d’erreur serait tout de même tout en haut.
Pour éviter cela, il est possible d’assigner une erreur à un champ précis :

1 def clean(self):
2 cleaned_data = super(ContactForm , self).clean ()
3 sujet = cleaned_data.get('sujet')
4 message = cleaned_data.get('message ')
5
6 if sujet and message: # Est -ce que sujet et message sont

valides ?
7 if "pizza" in sujet and "pizza" in message:
8 msg = u"Vous parlez déjà de pizzas dans le sujet , n

'en parlez plus dans le message !"
9 self._errors["message"] = self.error_class ([msg])

10
11 del cleaned_data["message"]

102

DES FORMULAIRES À PARTIR DE MODÈLES

Figure 9.3 – Formulaire invalide

12
13 return cleaned_data

Le début est identique, en revanche, si les deux champs contiennent le mot « pizza »,
nous ne renvoyons plus une exception, mais nous définissons une liste d’erreurs à un
dictionnaire (self._errors) avec comme clé le nom du champ concerné. Cette liste doit
obligatoirement être le résultat d’une fonction de la classe mère Form (self.error_class)
et celle-ci doit recevoir une liste de chaînes de caractères qui contiennent les différents
messages d’erreur.

Une fois l’erreur indiquée, il ne faut pas oublier de supprimer la valeur du champ du
dictionnaire, car celle-ci n’est pas valide. Rappelez-vous, un champ manquant dans le
dictionnaire cleaned_data correspond à un champ invalide !

Et voici le résultat à la figure 9.4.

Des formulaires à partir de modèles

Dernière fonctionnalité que nous verrons à propos des dictionnaires : les Modelform.
Il s’agit de formulaires générés automatiquement à partir d’un modèle, ce qui évite la
plupart du temps de devoir écrire un formulaire pour chaque modèle créé. C’est un gain
de temps non négligeable ! Ils reprennent la plupart des caractéristiques des formulaires
classiques et s’utilisent comme eux.

Dans le chapitre sur les modèles, nous avons créé une classe Article. Pour rappel, la
voici :

1 class Article(models.Model):
2 titre = models.CharField(max_length=100)

103

CHAPITRE 9. LES FORMULAIRES

Figure 9.4 – Le message d’erreur est bien adapté

3 auteur = models.CharField(max_length=42)
4 slug = models.SlugField(max_length=100)
5 contenu = models.TextField(null=True)
6 date = models.DateTimeField(auto_now_add=True , auto_now=

False , verbose_name="Date de parution")
7 categorie = models.ForeignKey(Categorie)
8
9 def __unicode__(self):

10 return self.titre

Pour faire un formulaire à partir de ce modèle, c’est très simple :

1 from django import forms
2 from models import Article
3
4 class ArticleForm(forms.ModelForm):
5 class Meta:
6 model = Article

Et c’est tout ! Notons que nous héritons maintenant de forms.ModelForm et non plus
de forms.Form. Il y a également une sous-classe Meta (comme pour les modèles), qui
permet de spécifier des informations supplémentaires. Dans l’exemple, nous avons juste
indiqué sur quelle classe le ModelForm devait se baser (à savoir le modèle Article, bien
entendu).

Le rendu HTML du formulaire est plutôt éloquent. Observez la figure 9.5.

En plus de convertir les champs de modèle vers des champs de formulaire adéquats,
Django va même chercher toutes les catégories enregistrées dans la base de données et
les propose comme choix pour la ForeignKey ! Le framework va aussi utiliser certains
paramètres des champs du modèle pour les champs du formulaire. Par exemple, l’argu-

104

DES FORMULAIRES À PARTIR DE MODÈLES

Figure 9.5 – Le choix de la catégorie apparaît dans le formulaire

ment verbose_name du modèle sera utilisé comme l’argument label des formulaires,
help_text reste help_text et blank devient required (blank est un argument des
champs des modèles qui permet d’indiquer à l’administration et aux ModelForm si un
champ peut être laissé vide ou non, il est par défaut à False).

Une fonctionnalité très pratique des ModelForm est qu’il n’y a pas besoin d’extraire
les données une à une pour créer ou mettre à jour un modèle. En effet, il fournit
directement une méthode save qui va mettre à jour la base de données toute seul.
Petit exemple dans le shell :

1 >>> from blog.models import Article , Categorie
2 >>> from blog.forms import ArticleForm
3 >>> donnees = {
4 ... 'titre':u"Les crêpes c'est trop bon",
5 ... 'slug':"les -crepes -cest -trop -bon",
6 ... 'auteur ':"Maxime",
7 ... 'contenu ':u"Vous saviez que les crêpes bretonnes c'est trop

bon ? La pêche c'est nul à côté.",
8 ... 'categorie ':Categorie.objects.all()[0].id # Nous prenons l

'identifiant de la première catégorie qui vient
9 ... }

10 >>> form = ArticleForm(donnees)
11 >>> Article.objects.all()
12 []
13 >>> form.save()
14 <Article: Les crêpes c’est trop bon >
15 >>> Article.objects.all()
16 [<Article: Les crêpes c’est trop bon >]

105

CHAPITRE 9. LES FORMULAIRES

Tout objet d’un modèle sauvegardé possède un attribut id, c’est un identifiant
propre à chaque entrée. Avec les ForeignKey, c’est lui que nous utilisons
généralement comme clé étrangère.

Pratique, n’est-ce pas ? Nous avons ici simulé avec un dictionnaire le contenu d’un
éventuel request.POST et l’avons passé au constructeur d’ArticleForm. Depuis la
méthode save, le ModelForm va directement créer une entrée dans la base de données
et retourner l’objet créé.

De la même façon, il est possible de mettre à jour une entrée très simplement. En
donnant un objet du modèle sur lequel le ModelForm est basé, il peut directement
remplir les champs du formulaire et mettre l’entrée à jour selon les modifications de
l’utilisateur. Pour ce faire, dans une vue, il suffit d’appeler le formulaire ainsi :

1 form = ArticleForm(instance=article) # article est bien
entendu un objet d'Article quelconque dans la base de donné
es

Django se charge du reste, comme vous pouvez le voir sur la figure 9.6 !

Figure 9.6 – L’entrée se met automatiquement à jour !

Une fois les modifications du formulaire envoyées depuis une requête POST, il suffit de
reconstruire un ArticleForm à partir de l’article et de la requête et d’enregistrer les
changements si le formulaire est valide :

1 form = ArticleForm(request.POST , instance=article)
2 if form.is_valid ():
3 form.save()

L’entrée est désormais à jour.

Si vous souhaitez que certains champs ne soient pas éditables par vos utilisateurs, il

106

DES FORMULAIRES À PARTIR DE MODÈLES

est possible d’en sélectionner ou d’en exclure certains, toujours grâce à la sous-classe
Meta :

1 class ArticleForm(forms.ModelForm):
2 class Meta:
3 model = Article
4 exclude = ('auteur ','categorie ','slug') # Exclura les

champs nommés « auteur », « categorie » et « slug »

En ayant exclu ces trois champs, cela revient à sélectionner uniquement les champs
titre et contenu, comme ceci :

1 class ArticleForm(forms.ModelForm):
2 class Meta:
3 model = Article
4 fields = ('titre','contenu ',)

Petite précision : l’attribut fields permet également de déterminer l’ordre
des champs. Le premier du tuple arriverait en première position dans le for-
mulaire, le deuxième en deuxième position, etc.

Observez le résultat à la figure 9.7.

Figure 9.7 – Seuls les champs « titre » et « contenu » sont éditables

Cependant, lors de la création d’une nouvelle entrée, si certains champs obligatoires du
modèle (ceux qui n’ont pas null=True comme argument) ont été exclus, il ne faut pas
oublier de les rajouter par la suite. Il ne faut donc pas appeler la méthode save telle
quelle sur un ModelForm avec des champs exclus, sinon Django lèvera une exception.
Un paramètre spécial de la méthode save a été prévu pour cette situation :

1 >>> from blog.models import Article , Categorie
2 >>> from blog.forms import ArticleForm
3 >>> donnees = {
4 ... 'titre':"Un super titre d'article !",
5 ... 'contenu ':"Un super contenu ! (ou pas)"
6 ... }

107

CHAPITRE 9. LES FORMULAIRES

7 >>> form = ArticleForm(donnees) # Pas besoin de spécifier les
autres champs , ils ont été exclus

8 >>> article = form.save(commit=False) # Ne sauvegarde pas
directement l'article dans la base de données

9 >>> article.categorie = Categorie.objects.all()[0] # Nous
ajoutons les attributs manquants

10 >>> article.auteur = "Mathieu"
11 >>> article.save()

La chose importante dont il faut se souvenir ici est donc form.save(commit=False)
qui permet de ne pas sauvegarder directement l’article dans la base de données, mais
renvoie un objet avec les données du formulaire sur lequel nous pouvons continuer à
travailler.

En résumé

– Un formulaire est décrit par une classe, héritant de django.forms.Form, où chaque
attribut est un champ du formulaire défini par le type des données attendues.

– Chaque classe de django.forms permet d’affiner les données attendues : taille maxi-
male du contenu du champ, champ obligatoire ou optionnel, valeur par défaut. . .

– Il est possible de récupérer un objet Form après la validation du formulaire et de
vérifier si les données envoyées sont valides, via form.is_valid().

– La validation est personnalisable, grâce à la réécriture des méthodes clean_NOM_DU_C
HAMP() et clean().

– Pour moins de redondances, la création de formulaires à partir de modèles existant
se fait en héritant de la classe ModelForm, à partir de laquelle nous pouvons modifier
les champs éditables et leurs comportements.

108

Chapitre 10
La gestion des fichiers

Difficulté :

A utre point essentiel du web actuel : il est souvent utile d’envoyer des fichiers sur un
site web afin que celui-ci puisse les réutiliser par la suite (avatar d’un membre, album
photos, chanson. . .). Nous couvrirons dans cette partie la gestion des fichiers côté

serveur et les méthodes proposées par Django.

109

CHAPITRE 10. LA GESTION DES FICHIERS

Enregistrer une image

Préambule : avant de commencer à jouer avec des images, il est nécessaire
d’installer la Python Imaging Library (PIL). Django se sert en effet de cette
dernière pour faire ses traitements sur les images.

B

�

�
	Télécharger PIL

Code web : 966455
Pour introduire la gestion des images, prenons un exemple simple : considérons un ré-
pertoire de contacts dans lequel les contacts ont trois caractéristiques : leur nom, leur
adresse et une photo. Pour ce faire, créons un nouveau modèle (placez-le dans l’appli-
cation de votre choix, personnellement nous réutiliserons ici l’application « blog ») :

1 class Contact(models.Model):
2 nom = models.CharField(max_length=255)
3 adresse = models.TextField ()
4 photo = models.ImageField(upload_to="photos/")
5
6 def __unicode__(self):
7 return self.nom

La nouveauté ici est bien entendu ImageField. Il s’agit d’un champ Django comme les
autres, si ce n’est qu’il contiendra une image (au lieu d’une chaîne de caractères, une
date, un nombre. . .).

ImageField prend un argument obligatoire : upload_to. Ce paramètre permet de dé-
signer l’endroit où seront enregistrées sur le disque dur les images assignées à l’attribut
photo pour toutes les instances du modèle. Nous n’avons pas indiqué d’adresse abso-
lue ici, car en réalité le répertoire indiqué depuis le paramètre sera ajouté au chemin
absolu fourni par la variable MEDIA_ROOT dans votre settings.py. Il est impératif de
configurer correctement cette variable avant de commencer à jouer avec des fichiers.

Afin d’avoir une vue permettant de créer un nouveau contact, il faudra créer un formu-
laire adapté. Créons un formulaire similaire au modèle (un ModelForm est tout à fait
possible aussi), tout ce qu’il y a de plus simple :

1 class NouveauContactForm(forms.Form):
2 nom = forms.CharField ()
3 adresse = forms.CharField(widget=forms.Textarea)
4 photo = forms.ImageField ()

Le champ ImageField vérifie que le fichier envoyé est bien une image valide, sans quoi
le formulaire sera considéré comme invalide. Et le tour est joué !

Revenons-en donc à la vue. Elle est également similaire à un traitement de formulaire
classique, à un petit détail près :

1 def nouveau_contact(request):
2 sauvegarde = False

110

http://www.siteduzero.com/codeweb/966455

ENREGISTRER UNE IMAGE

3
4 if request.method == "POST":
5 form = NouveauContactForm(request.POST , request.

FILES)
6 if form.is_valid ():
7 contact = Contact ()
8 contact.nom = form.cleaned_data["nom"]
9 contact.adresse = form.cleaned_data["adresse

"]
10 contact.photo = form.cleaned_data["photo"]
11 contact.save()
12
13 sauvegarde = True
14 else:
15 form = NouveauContactForm ()
16
17 return render(request , 'contact.html',locals ())

Faites bien attention à la ligne 5 : un deuxième argument a été ajouté, il s’agit de
request.FILES. En effet, request.POST ne contient que des données textuelles, tous
les fichiers sélectionnés sont envoyés depuis une autre méthode, et sont finalement
recueillis par Django dans le dictionnaire request.FILES. Si vous ne passez pas cette
variable au constructeur, celui-ci considérera que le champ photo est vide et n’a donc
pas été complété par l’utilisateur, le formulaire sera donc invalide.

Le champ ImageField renvoie une variable du type UploadedFile, qui est une classe
définie par Django. Cette dernière hérite de la classe django.core.files.File. Sachez
que si vous souhaitez créer une entrée en utilisant une photo sur votre disque dur
(autrement dit, vous ne disposez pas d’une variable UploadedFile renvoyée par le
formulaire), vous devez créer un objet File (prenant un fichier ouvert classiquement)
et le passer à votre modèle. Exemple depuis la console :

1 >>> from blog.models import Contact
2 >>> from django.core.files import File
3 >>> c = Contact(nom="Jean Dupont",adresse="Rue Neuve 34, Paris"

)
4 >>> photo = File(open('/chemin/vers/photo/dupont.jpg','r'))
5 >>> c.photo = photo
6 >>> c.save()

Pour terminer, le template est également habituel, toujours à une exception près :

1 <h1>Ajouter un nouveau contact </h1 >
2
3 {% if sauvegarde %}
4 <p>Ce contact a bien été enregistré.</p>
5 {% endif %}
6
7 <p>
8 <form method="post" enctype="multipart/form -data" action=".

">

111

CHAPITRE 10. LA GESTION DES FICHIERS

9 {% csrf_token %}
10 {{ form.as_p }}
11 <input type="submit"/>
12 </form >
13 </p>

Faites bien attention au nouvel attribut de la balise form : enc‌
type="multipart/form-data". En effet, sans ce dernier, le navigateur n’en-
verra pas les fichiers au serveur web. Oublier cet attribut et le dictionnaire
request.FILES décrit précédemment sont des erreurs courantes qui peuvent
vous faire perdre bêtement beaucoup de temps, ayez le réflexe d’y penser !

Sachez que Django n’acceptera pas n’importe quel fichier. En effet, il s’assurera que le
fichier envoyé est bien une image, sans quoi il retournera une erreur.

Vous pouvez essayer le formulaire : vous constaterez qu’un nouveau fichier a été créé
dans le dossier renseigné dans la variable MEDIA_ROOT. Le nom du fichier créé sera en
fait le même que celui sur votre disque dur (autrement dit, si vous avez envoyé un fichier
nommé mon_papa.jpg, le fichier côté serveur gardera le même nom). Il est possible de
modifier ce comportement, nous y reviendrons plus tard.

Afficher une image

Maintenant que nous possédons une image enregistrée côté serveur, il ne reste plus qu’à
l’afficher chez le client. Cependant, un petit problème se pose : par défaut, Django ne
s’occupe pas du service de fichiers média (images, musiques, vidéos. . .), et généralement
il est conseillé de laisser un autre serveur s’en occuper (voir l’annexe sur le déploiement
du projet en production). Néanmoins, pour la phase de développement, il est tout de
même possible de laisser le serveur de développement s’en charger. Pour ce faire, il
vous faut compléter la variable MEDIA_URL dans settings.py et ajouter cette directive
dans votre urls.py global :

1 from django.conf.urls.static import static
2 from django.conf import settings
3
4 urlpatterns += static(settings.MEDIA_URL , document_root=

settings.MEDIA_ROOT)

Cela étant fait, tous les fichiers consignés dans le répertoire configuré depuis MEDIA_ROOT
(dans lequel Django déplace les fichiers enregistrés) seront accessibles depuis l’adresse
telle qu’indiquée depuis MEDIA_URL (un exemple de MEDIA_URL serait simplement "/me‌
dia/" ou "media.monsite.fr/" en production).

Cela étant fait, l’affichage d’une image est trivial. Si nous reprenons la liste des contacts
enregistrés dans une vue simple :

1 def voir_contacts(request):

112

AFFICHER UNE IMAGE

2 contacts = Contact.objects.all()
3 return render(request , 'voir_contacts.html',{'contacts ':

contacts })

Côté template :

1 <h1>Liste des contacts </h1>
2
3 {% for contact in contacts %}
4 <h2 >{{ contact.nom }}</h2>
5 Adresse : {{ contact.adresse|linebreaks }}
6
7 {% endfor %}

Avant de s’attarder aux spécificités de l’affichage de l’image, une petite explication
concernant le tag linebreaks. Par défaut, Django ne convertit pas les retours à la
ligne d’une chaine de caractères (comme l’adresse ici) en un
 automatiquement,
et cela pour des raisons de sécurité. Pour autoriser l’ajout de retours à la ligne en
HTML, il faut utiliser ce tag, comme dans le code ci-dessus, sans quoi toute la chaîne
sera sur la même ligne.

Revenons donc à l’adresse de l’image. Vous aurez déjà plus que probablement reconnu
la variable MEDIA_URL de settings.py, qui fait son retour. Elle est accessible depuis
le template grâce à un processeur de contexte inclus par défaut.

contact.photo renvoie simplement l’adresse relative vers le dossier et le nom du
fichier associé. Afin de construire une adresse complète, il est impératif d’associer
ces deux parties d’adresse, simplement en les juxtaposant. Si MEDIA_URL vaut "me‌
dia.monsite.fr/" et contact.photo vaut "photos/mon_papa.jpg", l’adresse abso-
lue concaténée sera donc "media.monsite.fr/photos/mon_papa.jpg".

Le résultat est plutôt simple, comme vous pouvez le constater sur la figure 10.1.

Figure 10.1 – L’adresse de Chuck Norris !

113

CHAPITRE 10. LA GESTION DES FICHIERS

Il est important de ne jamais renseigner en dur le lien vers l’endroit où est situé le
dossier contenant les fichiers. Passer par MEDIA_URL est une méthode bien plus propre.

Avant de généraliser pour tous les types de fichiers, sachez qu’un ImageField non
nul possède deux attributs supplémentaires : width et height. Ces deux attributs
renseignent respectivement la largeur et la hauteur en pixels de l’image.

Encore plus loin

Heureusement, la gestion des fichiers ne s’arrête pas aux images. N’importe quel type
de fichier peut être enregistré. La différence avec les images est plutôt maigre.

Au lieu d’utiliser ImageField dans les formulaires et modèles, il suffit tout simple-
ment d’utiliser FileField. Que ce soit dans les formulaires ou les modèles, le champ
s’assurera que ce qui lui est passé est bien un fichier, mais cela ne devra plus être
nécessairement une image valide.

FileField retournera toujours un objet de django.core.files.File. Cette classe
possède notamment les attributs suivants (l’exemple ici est réalisé avec un ImageField,
mais les attributs sont également valides avec un FileField bien évidemment) :

1 >>> from blog.models import Contact
2 >>> c = Contact.objects.get(nom="Chuck Norris")
3 >>> c.photo.name
4 u'photos/chuck_norris.jpg' # Chemin relatif vers le fichier à

partir de MEDIA_ROOT
5 >>> c.photo.path
6 u'/home/mathx/crepes_bretonnes/media/photos/chuck_norris.jpg'

Chemin absolu
7 >>> c.photo.url
8 'http :// media.crepes -bretonnes.com/photos/chuck_norris.jpg' #

URL telle que construite à partir de MEDIA_URL
9 >>> c.photo.size

10 45300 # Taille du fichier en bytes

De plus, un objet File possède également des attributs read et write, comme un
fichier (ouvert à partir d’open()) classique.

Dernière petite précision concernant le nom des fichiers côté serveur. Nous avons men-
tionné plus haut qu’il est possible de les renommer à notre guise, et de ne pas garder
le nom que l’utilisateur avait sur son disque dur.

La méthode est plutôt simple : au lieu de passer une chaîne de caractères comme
paramètre upload_to dans le modèle, il faut lui passer une fonction qui retournera le
nouveau nom du fichier. Cette fonction prend deux arguments : l’instance du modèle
où le FileField est défini, et le nom d’origine du fichier.

Un exemple de fonction serait donc simplement :

1 def renommage(instance , nom):

114

ENCORE PLUS LOIN

2 return instance.id+'.'+nom.split('.')[-1] # Nous nous
basons sur l'ID de l'entrée et nous gardons l'extension
du fichier (en supposant ici que le fichier possède bien
une extension)

Un exemple de modèle utilisant cette fonction serait donc simplement :

1 class Document(models.Model):
2 nom = models.CharField(max_length=100)
3 doc = models.FileField(upload_to=renommage , verbose_name="

Document")

Désormais, vous devriez être en mesure de gérer correctement toute application néces-
sitant des fichiers !

En résumé

– L’installation de la bibliothèque PIL (Python Imaging Library) est nécessaire pour
gérer les images dans Django. Cette bibliothèque permet de faire des traitements sur
les images (vérification et redimensionnement notamment).

– Le stockage d’une image dans un objet en base se fait via un champ models.ImageField.
Le stockage d’un fichier quelconque est similaire, avec models.FileField.

– Les fichiers uploadés seront stockés dans le répertoire fourni par MEDIA_ROOT dans
votre settings.py.

115

CHAPITRE 10. LA GESTION DES FICHIERS

116

Chapitre 11
TP : un raccourcisseur d’URL

Difficulté :

D ans ce chapitre, nous allons mettre en pratique tout ce que vous avez appris jusqu’ici.
Il s’agit d’un excellent exercice qui permet d’apprendre à lier les différents éléments du
framework que nous avons étudiés (URL, modèles, vues, formulaires, administration

et templates).

117

CHAPITRE 11. TP : UN RACCOURCISSEUR D’URL

Cahier des charges

Pour ce travail pratique, nous allons réaliser un raccourcisseur d’URL. Ce type de
service est notamment utilisé sur les sites de microblogging (comme Twitter) ou les
messageries instantanées, où utiliser une très longue URL est difficile, car le nombre de
caractères est limité.

Typiquement, si vous avez une longue URL, un raccourcisseur créera une autre URL,
beaucoup plus courte, que vous pourrez distribuer. Lorsque quelqu’un cliquera sur
le lien raccourci, il sera directement redirigé vers l’URL plus longue. Par exemple,
tib.ly/abcde redirigerait vers www.mon-super-site.com/qui-a-une/URL-super-lo
ngue. Le raccourcisseur va générer un code (ici abcde) qui sera propre à l’URL plus
longue. Un autre code redirigera le visiteur vers une autre URL.

Vous allez devoir créer une nouvelle application que nous nommerons mini_url. Cette
application ne contiendra qu’un modèle appelé MiniURL, c’est lui qui enregistrera les
raccourcis. Il comportera les champs suivants :

– L’URL longue : URLField ;
– Le code qui permet d’identifier le raccourci ;
– La date de création du raccourci ;
– Le pseudo du créateur du raccourci (optionnel) ;
– Le nombre d’accès au raccourci (une redirection = un accès).

Nous avons indiqué le type du champ pour l’URL, car vous ne l’avez pas vu dans le
cours auparavant. Les autres sont classiques et ont été vus, nous supposons donc que
vous choisirez le bon type. Les deux premiers champs (URL et code) devront avoir
le paramètre unique=True. Ce paramètre garantit que deux entrées ne partageront
jamais le même code ou la même URL, ce qui est primordial ici. Finalement, le nombre
d’accès sera par défaut mis à 0 grâce au paramètre default=0.

Vous devrez également créer un formulaire, plus spécialement un ModelForm basé sur
le modèle MiniURL. Il ne contiendra que les champs URL et pseudo, le reste sera soit
initialisé selon les valeurs par défaut, soit généré par la suite (le code notamment).

Nous vous fournissons la fonction qui permet de générer le code :

1 def generer(N):
2 caracteres = string.letters + string.digits
3 aleatoire = [random.choice(caracteres) for _ in xrange(N)]
4
5 return ''.join(aleatoire)

En théorie, il faudrait vérifier que le code n’est pas déjà utilisé ou alors faire
une méthode nous assurant l’absence de doublon. Dans un souci de simplicité
et de pédagogie, nous allons sauter cette étape.

Vous aurez ensuite trois vues :

– Une vue affichant toutes les redirections créées et leurs informations, triées par ordre

118

CAHIER DES CHARGES

descendant, de la redirection avec le plus d’accès vers celle en ayant le moins ;
– Une vue avec le formulaire pour créer une redirection ;
– Une vue qui prend comme paramètre dans l’URL le code et redirige l’utilisateur vers
l’URL longue.

Partant de ces trois fonctions, il ne faudra que 2 templates (la redirection n’en ayant
pas besoin), et 3 routages d’URL bien entendu.

L’administration devra être activée, et le modèle accessible depuis celle-ci. Il devra être
possible de rechercher des redirections depuis la longue URL via une barre de recherche,
tous les champs devront être affichés dans une catégorie et le tri par défaut sera fait
selon la date de création du raccourci.

Voici aux figures 11.1, 11.2 et 11.3 ce que vous devriez obtenir.

Figure 11.1 – Liste des URL raccourcies

Figure 11.2 – Il est possible de rechercher des URL

Figure 11.3 – Raccourcir une URL

Si vous coincez sur quelque chose, n’hésitez pas à aller relire les explications dans le
chapitre concerné, tout y a été expliqué.

119

CHAPITRE 11. TP : UN RACCOURCISSEUR D’URL

Correction

Normalement, cela ne devrait pas avoir posé de problèmes !

Il fallait donc créer une nouvelle application et l’inclure dans votre settings.py :

python manage.py startapp mini_url

Votre models.py devrait ressembler à ceci :

1 #-*- coding: utf -8 -*-
2 from django.db import models
3 import random
4 import string
5
6 class MiniURL(models.Model):
7 url = models.URLField(verbose_name=u"URL à réduire", unique

=True)
8 code = models.CharField(max_length=6, unique=True)
9 date = models.DateTimeField(auto_now_add=True , verbose_name

="Date d'enregistrement")
10 pseudo = models.CharField(max_length=255 , blank=True , null=

True)
11 nb_acces = models.IntegerField(default=0, verbose_name=u"

Nombre d'accès à l'URL")
12
13 def __unicode__(self):
14 return u"[{0}] {1}".format(self.code , self.url)
15
16 def save(self , *args , ** kwargs):
17 if self.pk is None:
18 self.generer(6)
19
20 super(MiniURL , self).save(*args , ** kwargs)
21
22 def generer(self , N):
23 caracteres = string.letters + string.digits
24 aleatoire = [random.choice(caracteres) for _ in xrange(

N)]
25
26 self.code = ''.join(aleatoire)
27
28 class Meta:
29 verbose_name = "Mini URL"
30 verbose_name_plural = "Minis URL"

Il y a plusieurs commentaires à faire dessus. Tout d’abord, nous avons surchargé la
méthode save(), afin de générer automatiquement le code de notre URL. Nous avons
pris le soin d’intégrer la méthode generer() au sein du modèle, mais il est aussi
possible de la déclarer à l’extérieur et de faire self.code = generer(6). Il ne faut

120

CORRECTION

surtout pas oublier la ligne qui appelle le save() parent, sinon lorsque vous validerez
votre formulaire il ne se passera tout simplement rien !

La classe Meta ici est similaire à la classe Meta d’un ModelForm, elle permet d’in-
diquer des métadonnées concernant le modèle. Ici nous avons modifié le nom qui
sera utilisé dans les ModelForm, l’administration (verbose_name) et sa forme plurielle
(verbose_name_plural).

Après la création de nouveaux modèles, il fallait les ajouter dans la base de données via
la commande python manage.py syncdb (n’oubliez pas d’ajouter l’application dans
votre settings.py !) :

$ python manage.py syncdb
Creating tables ...
Creating table mini_url_miniurl
Installing custom SQL ...
Installing indexes ...
Installed 0 object(s) from 0 fixture(s)

Le forms.py est tout à fait classique :

1 #-*- coding: utf -8 -*-
2 from django import forms
3 from models import MiniURL
4
5 class MiniURLForm(forms.ModelForm):
6 class Meta:
7 model = MiniURL
8 fields = ('url','pseudo ')

De même pour admin.py :

1 #-*- coding: utf -8 -*-
2 from django.contrib import admin
3 from models import MiniURL
4
5 class MiniURLAdmin(admin.ModelAdmin):
6 list_display = ('url', 'code', 'date', 'pseudo ','nb_acces

')
7 list_filter = ('pseudo ',)
8 date_hierarchy = 'date'
9 ordering = ('date',)

10 search_fields = ('url',)
11
12 admin.site.register(MiniURL , MiniURLAdmin)

Voici mini_url/urls.py. N’oubliez pas de l’importer dans votre urls.py principal.
Rien de spécial non plus :

1 #-*- coding: utf -8 -*-
2 from django.conf.urls import patterns , url
3

121

CHAPITRE 11. TP : UN RACCOURCISSEUR D’URL

4 urlpatterns = patterns('mini_url.views',
5 url(r'^$', 'liste', name='url_liste '), # Une string vide

indique la racine
6 url(r'^nouveau/$', 'nouveau ', name='url_nouveau '),
7 url(r'^(?P<code >\w{6})/$', 'redirection ', name='

url_redirection '), # (?P<code >\w{6}) capturera 6 caract
ères alphanumériques.

8)

La directive permettant d’importer le mini_url/urls.py dans votre urls.py princi-
pal :

1 url(r'^m/', include('mini_url.urls')),

Nous avons nommé les URL ici pour des raisons pratiques que nous verrons
plus tard dans ce cours.

Et pour finir, le fichier views.py :

1 #-*- coding: utf -8 -*-
2 from django.shortcuts import redirect , get_object_or_404 ,

render
3 from models import MiniURL
4 from forms import MiniURLForm
5
6 def liste(request):
7 """ Affichage des redirections """
8 minis = MiniURL.objects.order_by('-nb_acces ')
9

10 return render(request , 'mini_url/liste.html', locals ())
11
12 def nouveau(request):
13 """ Ajout d'une redirection """
14 if request.method == "POST":
15 form = MiniURLForm(request.POST)
16 if form.is_valid ():
17 form.save()
18 return redirect(liste)
19 else:
20 form = MiniURLForm ()
21
22 return render(request , 'mini_url/nouveau.html', {'form':

form})
23
24 def redirection(request , code):
25 """ Redirection vers l'URL enregistrée"""
26 mini = get_object_or_404(MiniURL , code=code)
27 mini.nb_acces += 1
28 mini.save()

122

CORRECTION

29
30 return redirect(mini.url , permanent=True)

Notez qu’à cause de l’argument permanent=True, le serveur renvoie le code HTTP 301
(redirection permanente).

Certains navigateurs mettent en cache une redirection permanente. Ainsi, la
prochaine fois que le visiteur cliquera sur votre lien, le navigateur se souviendra
de la redirection et vous redirigera sans même appeler votre page. Le nombre
d’accès ne sera alors pas incrémenté.

Pour terminer, les deux templates, liste.html et nouveau.html. Remarquez {{ re‌
quest.get_host }} qui donne le nom de domaine et le port utilisé. En production,
par défaut il s’agit de localhost:8000. Néanmoins, si nous avions un autre domaine
comme http://bit.ly, c’est ce domaine qui serait utilisé (il serait d’ailleurs beaucoup
plus court et pratique comme raccourcisseur d’URL).
1 <h1>Le raccourcisseur d’URL spécial crêpes bretonnes !</h1>
2
3 <p>Raccourcir une URL.</p

>
4
5 <p>Liste des URL raccourcies :</p>
6
7 {% for mini in minis %}
8 {{ mini.url }} via <a href="http ://{{ request.get_host

}}{% url 'url_redirection ' mini.code %}" >{{ request.
get_host }}{% url 'url_redirection ' mini.code %}

9 {% if mini.pseudo %}par {{ mini.pseudo }}{% endif %} ({{
mini.nb_acces }} accès)

10 {% empty %}
11 Il n’y en a pas actuellement .
12 {% endfor %}
13

1 <h1>Raccourcir une URL </h1>
2
3 <form method="post" action="{% url 'url_nouveau ' %}">
4 {% csrf_token %}
5 {{ form.as_p }}
6 <input type="submit"/>
7 </form >

À part la sous-classe Meta du modèle et request.get_host, tout le reste a été couvert
dans les chapitres précédents. Si quelque chose vous semble étrange, n’hésitez pas à
aller relire le chapitre concerné.

Je vous prose de télécharger les codes.

B

�

�
	Télécharger le code

Code web : 185917

123

http://www.siteduzero.com/codeweb/185917

CHAPITRE 11. TP : UN RACCOURCISSEUR D’URL

Pour finir, voici quelques idées d’améliorations pour ce TP :

– Intégrer un style CSS et des images depuis des fichiers statiques via le tag {% block
%} ;

– Donner davantage de statistiques sur les redirections ;
– Proposer la possibilité de rendre anonyme une redirection ;
– Etc.

124

Troisième partie

Techniques avancées

125

Chapitre 12
Les vues génériques

Difficulté :

S ur la plupart des sites web, il existe certains types de pages où créer une vue comme
nous l’avons fait précédemment est lourd et presque inutile : pour une page statique
sans informations dynamiques par exemple, ou encore de simple listes d’objets sans

traitements particuliers. Django est conçu pour n’avoir à écrire que le minimum, le frame-
work inclut donc un système de vues génériques, qui évite au développeur de devoir écrire
des fonctions simples et identiques, nous permettant de gagner du temps et des lignes de
code.

Ce chapitre est assez long et dense en informations. Nous vous conseillons de lire en plusieurs
fois : nous allons faire plusieurs types distincts de vues, qui ont chacune une utilité différente.
Il est tout à fait possible de poursuivre ce cours sans connaître tous ces types.

127

CHAPITRE 12. LES VUES GÉNÉRIQUES

Premiers pas avec des pages statiques

Les vues génériques sont en quelque sorte des vues très modulaires, prêtes à être utilisées
directement, incluses par défaut dans le framework et cela sans devoir écrire la vue elle-
même. Pour illustrer le fonctionnement global des vues génériques, prenons cet exemple
de vue classique, qui ne s’occupe que d’afficher un template à l’utilisateur, sans utiliser
de variables :
1 #-*- coding: utf -8 -*-
2 from django.shortcuts import render
3
4 def faq(request):
5 return render(request , 'blog/faq.html', {})

1 url('faq', 'blog.views.faq', name='faq'),

Une première caractéristique des vues génériques est que ce ne sont pas des fonctions,
comme la vue que nous venons de présenter, mais des classes. L’amalgame 1 vue =
1 fonction en est du coup quelque peu désuet. Ces classes doivent également être
renseignées dans vos views.py.

Il existe deux méthodes principales d’utilisation pour les vues génériques :

1. Soit nous créons une classe, héritant d’un type de vue générique dont nous sur-
chargerons les attributs ;

2. Soit nous appelons directement la classe générique, en passant en arguments les
différentes informations à utiliser.

Toutes les classes de vues génériques sont situées dans django.views.generic. Un
premier type de vue générique est TemplateView. Typiquement, TemplateView permet,
comme son nom l’indique, de créer une vue qui s’occupera du rendu d’un template.

Comme dit précédemment, créons une classe héritant de TemplateView, et surchar-
geons ses attributs :
1 from django.views.generic import TemplateView
2
3 class FAQView(TemplateView):
4 template_name = "blog/faq.html" # chemin vers le template à

afficher

Dès lors, il suffit de router notre URL vers une méthode héritée de la classe Template‌
View, ici as_view :
1 from django.conf.urls import patterns , url , include
2 from blog.views import FAQView # N'oubliez pas d'importer la

classe mère
3
4 urlpatterns = patterns('',
5 (r'^faq/$', FAQView.as_view ()), # Nous demandons la vue

correspondant à la classe FAQView créée précédemment
6)

128

LISTER ET AFFICHER DES DONNÉES

C’est tout ! Lorsqu’un visiteur accède à /blog/faq/, le contenu du fichier templates/‌
blog/faq.html sera affiché.

Que se passe-t-il concrètement ?

La méthode as_view de FAQView retourne une vue (en réalité, il s’agit d’une fonction
classique) qui se basera sur ses attributs pour déterminer son fonctionnement. Étant
donné que nous avons indiqué un template à utiliser depuis l’attribut template_name,
la classe l’utilisera pour générer une vue adaptée.

Nous avons indiqué précédemment qu’il y avait deux méthodes pour utiliser les vues
génériques. Le principe de la seconde est de directement instancier TemplateView dans
le fichier urls.py, en lui passant en argument notre template_name :

1 from django.conf.urls import patterns , url , include
2 from django.views.generic import TemplateView # L'import a

changé, attention !
3
4 urlpatterns = patterns('',
5 url(r'^faq/', TemplateView.as_view(template_name='blog/faq.

html')),
6)

Et dans notre views.py ?

Vous pouvez alors retirer FAQView, la classe ne sert plus à rien. Pour les Template‌
View, la première méthode présente peu d’intérêt, cependant nous verrons par la suite
qu’hériter d’une classe sera plus facile que tout définir dans urls.py.

Lister et afficher des données

Jusqu’ici, nous avons vu comment afficher des pages statiques avec des vues génériques.
Bien que ce soit pratique, il n’y a jusqu’ici rien de très puissant.

Abordons maintenant quelque chose de plus intéressant. Un schéma utilisé presque
partout sur le web est le suivant : vous avez une liste d’objets (des articles, des images,
etc.), et lorsque vous cliquez sur un élément, vous êtes redirigés vers une page présentant
plus en détail ce même élément.

Nous avons déjà réalisé quelque chose de semblable dans le chapitre sur les modèles
(page 59) avec notre liste d’articles et l’affichage individuel d’articles. Nous allons re-
partir de la même idée, mais cette fois-ci avec des vues génériques. Pour ce faire, nous
utiliserons deux nouvelles classes : ListView et DetailView. Nous réutiliserons les deux

129

CHAPITRE 12. LES VUES GÉNÉRIQUES

modèles Article et Categorie, qui ne changeront pas.

Une liste d’objets en quelques lignes avec ListView

Commençons par une simple liste de nos articles, sans pagination. À l’instar de Tem‌
plateView, nous pouvons utiliser ListView directement en lui passant en paramètre
le modèle à traiter :

1 from django.conf.urls import patterns , url , include
2 from django.views.generic import ListView
3 from blog.models import Article
4
5 urlpatterns = patterns('',
6 # Nous allons réécrire l'URL de l'accueil
7 url(r'^$', ListView.as_view(model=Article ,)),
8
9 # Et nous avons toujours nos autres pages ...

10 url(r'^article /(?P<id >\d+)$', 'blog.views.lire'),
11 url(r'^(?P<page >\d+)$', 'blog.views.archives '),
12 url(r'^categorie /(?P<slug >.+)$', 'blog.views.voir_categorie

'),
13)

Avec cette méthode, Django impose quelques conventions :

– Le template devra s’appeler <app>/<model>_list.html. Dans notre cas, le template
serait nommé blog/article_list.html.

– L’unique variable retournée par la vue générique et utilisable dans le template est
appelée object_list, et contiendra ici tous nos articles.

Il est possible de redéfinir ces valeurs en passant des arguments supplémentaires à notre
ListView :

1 urlpatterns = patterns('',
2 url(r'^$', ListView.as_view(model=Article ,
3 context_object_name="derniers_articles",
4 template_name="blog/accueil.html")),
5 ...
6)

Par souci d’économie, nous souhaitons réutiliser le template blog/accueil.html qui
utilisait comme nom de variable derniers_articles à la place d’object_list, celui
par défaut de Django.

Vous pouvez dès lors supprimer la fonction accueil dans views.py, et vous obtien-
drez le même résultat qu’avant (ou presque, si vous avez plus de 5 articles) ! L’ordre
d’affichage des articles est celui défini dans le modèle, via l’attribut ordering de la
sous-classe Meta, qui se base par défaut sur la clé primaire de chaque entrée.

Il est possible d’aller plus loin : nous ne souhaitons généralement pas tout afficher sur
une même page, mais par exemple filtrer les articles affichés. Il existe donc plusieurs

130

LISTER ET AFFICHER DES DONNÉES

attributs et méthodes de ListView qui étendent les possibilités de la vue.

Par souci de lisibilité, nous vous conseillons plutôt de renseigner les classes dans
views.py, comme vu précédemment. Tout d’abord, changeons notre urls.py, pour
appeler notre nouvelle classe :
1 from blog.views import ListeArticles
2
3 urlpatterns = patterns('',
4 url(r'^$', ListeArticles.as_view (), name="blog_categorie"),

Via la fonction as_view , comme vu tout à l'heure
5 ...
6)

Pourquoi avoir nommé l’URL avec l’argument name ?

Pour profiter au maximum des possibilités de Django et donc écrire les URL via la
fonction reverse, et son tag associé dans les templates. L’utilisation du tag url se fera
dès lors ainsi : {% url "blog_categorie" categorie.id %}. Cette fonctionnalité ne
dépend pas des vues génériques, mais est inhérente au fonctionnement des URL en
général. Vous pouvez donc également associer le paramètre name à une vue normale.

Ensuite, créons notre classe qui reprendra les mêmes attributs que notre ListView de
tout à l’heure :
1 class ListeArticles(ListView):
2 model = Article
3 context_object_name = "derniers_articles"
4 template_name = "blog/accueil.html"

Désormais, nous souhaitons paginer nos résultats, afin de n’afficher que 5 articles par
page, par exemple. Il existe un attribut adapté :
1 class ListeArticles(ListView):
2 model = Article
3 context_object_name = "derniers_articles"
4 template_name = "blog/accueil.html"
5 paginate_by = 5

De cette façon, la page actuelle est définie via l’argument page, passé dans l’URL
(/?page=2 par exemple). Il suffit dès lors d’adapter le template pour faire apparaître la
pagination. Sachez que vous pouvez définir le style de votre pagination dans un template
séparé, et l’inclure à tous les endroits nécessaires, via {% include pagination.html
%} par exemple.

Le fonctionnement par défaut de la pagination est celui de la classe Pagina‌
tor, présent dans django.core.paginator. Référez-vous au chapitre sur
ce sujet.

131

CHAPITRE 12. LES VUES GÉNÉRIQUES

1 <h1>Bienvenue sur le blog des crêpes bretonnes !</h1>
2
3 {% for article in derniers_articles %}
4 <div class="article">
5 <h3 >{{ article.titre }}</h3>
6 <p>{{ article.contenu|truncatewords_html:80 }}</p>
7 <p>Lire

la suite
8 </div >
9 {% endfor %}

10
11 {# Mise en forme de la pagination ici #}
12 {% if is_paginated %}
13 <div class="pagination">
14 {% if page_obj.has_previous %}
15 <a href="?page ={{ page_obj.previous_page_number

}}">Précédente -
16 {% endif %}
17 Page {{ page_obj.number }} sur {{ page_obj.paginator

.num_pages }}
18 {% if page_obj.has_next %}
19 - <a href="?page ={{ page_obj.next_page_number }}"

>Suivante
20 {% endif %}
21 </div >
22 {% endif %}

Allons plus loin ! Nous pouvons également surcharger la sélection des objets à récupérer,
et ainsi soumettre nos propres filtres :

1 class ListeArticles(ListView):
2 model = Article
3 context_object_name = "derniers_articles"
4 template_name = "blog/accueil.html"
5 paginate_by = 5
6 queryset = Article.objects.filter(categorie__id=1)

Ici, seuls les articles de la première catégorie créée seront affichés. Vous pouvez bien
entendu effectuer des requêtes identiques à celle des vues, avec du tri, plusieurs condi-
tions, etc. Il est également possible de passer des arguments pour rendre la sélection
un peu plus dynamique en ajoutant l’ID souhaité dans l’URL.

1 from django.conf.urls import patterns , url
2 from blog.views import ListeArticles
3
4 urlpatterns = patterns('blog.views',
5 url(r'^categorie /(\w+)$', ListeArticles.as_view ()),
6 url(r'^article /(?P<id >\d+)$', 'lire'),
7 url(r'^(?P<page >\d+)$', 'archives ')
8)

132

LISTER ET AFFICHER DES DONNÉES

Dans la vue, nous sommes obligés de surcharger get_queryset, qui renvoie la liste d’ob-
jets à afficher. En effet, il est impossible d’accéder aux paramètres lors de l’assignation
d’attributs comme nous le faisons depuis le début.

1 class ListeArticles(ListView):
2 model = Article
3 context_object_name = "derniers_articles"
4 template_name = "blog/accueil.html"
5 paginate_by = 10
6
7 def get_queryset(self):
8 return Article.objects.filter(categorie__id=self.args[0

])

Tâchez tout de même de vous poser des limites, le désavantage ici est le suivant : la
lecture de votre urls.py devient plus difficile, tout comme votre vue (imaginez si vous
avez quatre arguments, à quoi correspond le deuxième ? le quatrième ?).

Enfin, il est possible d’ajouter des éléments au contexte, c’est-à-dire les variables qui
sont renvoyées au template. Par exemple, renvoyer l’ensemble des catégories, afin de
faire une liste de liens vers celles-ci. Pour ce faire, nous allons ajouter au tableau context
une clé categories qui contiendra notre liste :

1 def get_context_data(self , ** kwargs):
2 # Nous récupérons le contexte depuis la super -classe
3 context = super(ListeArticles , self).get_context_data (**

kwargs)
4 # Nous ajoutons la liste des catégories , sans filtre

particulier
5 context['categories '] = Categories.objects.all()
6 return context

Il est facile d’afficher la liste des catégories dans notre template :

1 <h3>Catégories disponibles </h3 >
2
3 {% for categorie in categories %}
4 {{

categorie.nom }}
5 {% endfor %}
6

Afficher un article via DetailView

Malgré tout cela, nous ne pouvons afficher que des listes, et non pas un objet précis.
Heureusement, la plupart des principes vus précédemment avec les classes héritant de
ListView sont applicables avec celles qui héritent de DetailView. Le but de Detail‌
View est de renvoyer un seul objet d’un modèle, et non une liste. Pour cela, il va falloir
passer un paramètre bien précis dans notre URL : pk, qui représentera la clé primaire
de l’objet à récupérer :

133

CHAPITRE 12. LES VUES GÉNÉRIQUES

1 from blog.views import ListeArticles , LireArticle
2
3 urlpatterns = patterns('blog.views',
4 url(r'^categorie /(\w+)$', ListeArticles.as_view ()),
5 url(r'^article /(?P<pk >\d+)$', LireArticle.as_view (), name='

blog_lire '),
6)

Maintenant que nous avons notre URL, avec la clé primaire en paramètre, il nous faut
écrire la classe qui va récupérer l’objet voulu et le renvoyer à un template précis :
1 class LireArticle(DetailView):
2 context_object_name = "article"
3 model = Article
4 template_name = "blog/lire.html"

. . . et encore une fois l’ancienne vue devient inutile. Souvenez-vous que notre fonction
lire() gérait le cas où l’ID de l’article n’existait pas, il en est de même ici. Comme tout
à l’heure, vu que nous avons nommé notre objet article, il n’y a aucune modification
à faire dans le template :
1 <h1 >{{ article.titre }} dans {{ article.

categorie.nom }}</h1 >
2 <p class="infos">Rédigé par {{ article.auteur }}, le {{ article

.date|date:"DATE_FORMAT" }}</p>
3 <div class="contenu" >{{ article.contenu|linebreaks }}</div >

Comme pour les ListView, il est possible de personnaliser la sélection avec get_queryset,
afin de ne sélectionner l’article que s’il est public par exemple. Une autre spécificité
utile lorsque nous affichons un objet, c’est d’avoir la possibilité de modifier un de ses
attributs, par exemple son nombre de vues ou sa date de dernier accès. Pour faire cette
opération, il est possible de surcharger la méthode get_object, qui renvoie l’objet à
afficher :
1 class LireArticle(DetailView):
2 context_object_name = "article"
3 model = Article
4 template_name = "blog/lire.html"
5
6 def get_object(self):
7 # Nous récupérons l'objet , via la super -classe
8 article = super(LireArticle , self).get_object ()
9

10 article.nb_vues += 1 # Imaginons que nous ayons un
attribut « Nombre de vues »

11 article.save()
12
13 return article # Et nous retournons l'objet à afficher

Enfin, sachez que la variable request, qui contient les informations sur la requête et
l’utilisateur, est également disponible dans les vues génériques. C’est un attribut de la
classe, que vous pouvez donc appeler dans n’importe quelle méthode via self.request.

134

AGIR SUR LES DONNÉES

Agir sur les données

Jusqu’ici, nous n’avons fait qu’afficher des données, statiques ou en provenance de
modèles. Nous allons maintenant nous occuper de la gestion de données. Pour cette
partie, nous reprendrons comme exemple notre application de raccourcissement d’URL
que nous avons développée lors du chapitre précédent. Pour rappel, dans le schéma
CRUD, il y a quatre types d’actions applicables sur une donnée :

– Create (créer) ;
– Read (lire, que nous avons déjà traité juste au-dessus) ;
– Update (mettre à jour) ;
– Delete (supprimer).

Nous montrerons comment réaliser ces opérations dans l’ordre indiqué. En effet, cha-
cune possède une vue générique associée.

CreateView

Commençons par la création d’objets, souvent utile sur le web de nos jours : un site
un tant soit peu communautaire permet à n’importe qui de fournir du contenu : des
commentaires, des posts de forum, etc., ou encore de poster un lien pour le mini-
fier. Pour simplifier notre formulaire d’ajout de liens, nous allons surcharger la classe
CreateView :

1 from django.views.generic import CreateView
2 from django.core.urlresolvers import reverse_lazy
3
4 class URLCreate(CreateView):
5 model = MiniURL
6 template_name = 'mini_url/nouveau.html'
7 form_class = MiniURLForm
8 success_url = reverse_lazy(liste)

Comme tout à l’heure, l’attribut model permet de spécifier avec quel modèle nous
travaillons, et template_name permet de spécifier le chemin vers le template (par dé-
faut, le chemin est <app>/<model>_create_form.html, avec le nom du modèle tout
en minuscules). La nouveauté ici réside dans les deux attributs suivants. Le premier,
form_class permet de spécifier quel ModelForm utiliser pour définir les champs dispo-
nibles à l’édition, et tout ce qui est propriété du formulaire. Ici, nous allons réutiliser
la classe que nous avions écrite précédemment étant donné qu’elle est suffisante pour
l’exemple.

Le dernier argument permet quant à lui de spécifier vers où rediriger l’utilisateur quand
le formulaire est validé et enregistré. Nous avons utilisé ici reverse_lazy, qui permet
d’utiliser la méthode reverse(), même si la configuration des URL n’a pas encore eu
lieu (ce qui est le cas ici, puisque les vues sont analysées avant les urls.py).

135

CHAPITRE 12. LES VUES GÉNÉRIQUES

Comment est-ce que cela fonctionne ?

Le comportement de cette classe est similaire à notre ancienne vue nouveau() : s’il
n’y a pas eu de requêtes de type POST, elle affiche le formulaire, selon les propriétés
de form_class, et dans le template fourni. Une fois validé et si, et seulement si, le
formulaire est considéré comme correct (if form.is_valid() dans notre ancienne
vue), alors la méthode save() est appelée sur l’objet généré par le formulaire, puis
redirige l’utilisateur vers l’URL success_url.

Notre template est déjà prêt pour cette vue, puisque l’objet Form renvoyé par cette vue
générique est nommé form, comme nous l’avions fait avec l’ancienne méthode.

En premier lieu, il faut rapidement éditer urls.py :

1 #-*- coding: utf -8 -*-
2 from django.conf.urls import patterns , url
3 from views import URLCreate
4
5 urlpatterns = patterns('mini_url.views',
6 url(r'^$', 'liste', name='url_liste '), # Une string vide

indique la racine
7 url(r'^nouveau/$', URLCreate.as_view (), name='url_nouveau ')

,
8 url(r'^(?P<code >\w{6})/$', 'redirection ', name='

url_redirection '), # (?P<code >\w{6}) capturera 6 caract
ères alphanumériques.

9)

Une fois cette ligne modifiée, nous pouvons retenter la génération d’une URL raccourcie.
Si vous vous rendez sur /url/nouveau, vous remarquerez que le comportement de la
page n’a pas changé. En réalité, notre nouvelle vue en fait autant que l’ancienne, mais
nous avons écrit sensiblement moins.

UpdateView

Après la création, attaquons-nous à la mise à jour des données. Imaginons que nous
souhaitions pouvoir changer l’URL ou le pseudo entré, il nous faut une nouvelle vue,
qui va nous permettre de fournir de nouveau ces informations. Cette fois, nous allons
hériter de la classe UpdateView qui se présente comme CreateView :

1 from django.views.generic import CreateView , UpdateView
2 from django.core.urlresolvers import reverse_lazy
3
4 class URLUpdate(UpdateView):
5 model = MiniURL
6 template_name = 'mini_url/nouveau.html'
7 form_class = MiniURLForm
8 success_url = reverse_lazy(liste)

136

AGIR SUR LES DONNÉES

Les deux classes sont quasi identiques ?

En effet, nous n’avons même pas pris le soin de changer le nom du template ! En fait, les
attributs des classes CreateView et UpdateView sont les mêmes, et leur fonctionnement
est très proche. En effet, entre la création d’un objet et sa mise à jour, la page n’a pas
réellement besoin d’être modifiée. Tout au plus, en cas de mise à jour, les champs sont
auto-complétés avec les données de l’objet.

Par défaut, le nom du template attribué à une vue générique de type UpdateView est
<app>/<model>_update_form.html, afin de pouvoir le différencier de la création.

Pour rendre notre template totalement fonctionnel, il faut juste remplacer la ligne

1 <form method="post" action="{% url "url_nouveau" %}">

par

1 <form method="post" action="">

En effet, nous utiliserons cette page pour deux types d’actions, ayant deux URL dis-
tinctes. Il suffit de se dire : « Quand nous validons le formulaire, nous soumettons la
requête à la même adresse que la page actuelle. » Il ne reste plus qu’à modifier notre
urls.py. Comme pour DetailView, il faut récupérer la clé primaire, appelée pk. Pas
de changement profond, voici la ligne :

1 url(r'^edition /(?P<pk >\d)/$', URLUpdate.as_view (), name='
url_update '), # Pensez à importer URLUpdate en début de
fichier

Désormais, vous pouvez accéder à l’édition d’un objet MiniURL. Pour y accéder, cela
se fait depuis les adresses suivantes : /url/edition/1 pour le premier objet, /url/e‌
dition/2 pour le deuxième, etc.

Vous pouvez le constater sur la figure 12.1 : le résultat est satisfaisant. Bien évidem-
ment, la vue est très minimaliste : n’importe qui peut éditer tous les liens, il n’y a pas
de message de confirmation, etc. Par contre, il y a une gestion des objets qui n’existe
pas en renvoyant une page d’erreur 404, des formulaires incorrects, etc. Tout cela est
améliorable.

Améliorons nos URL avec la méthode get_object()

Pour le moment, nous utilisons l’identifiant numérique, nommé pk, qui est la clé pri-
maire dans l’URL. Ce n’est pas forcément le meilleur choix (pour le référencement par
exemple). Nous pourrions prendre le code présent dans l’URL réduite (voir la figure
12.2).

Pas de souci d’unicité, nous savons que chaque entrée possède un code unique. Sur-
chargeons donc la méthode get_object, qui s’occupe de récupérer l’objet à mettre à
jour.

137

CHAPITRE 12. LES VUES GÉNÉRIQUES

Figure 12.1 – Exemple de formulaire de mise à jour, reprenant le même template que
l’ajout

Figure 12.2 – Ce que nous avons actuellement et ce que nous souhaitons avoir

138

AGIR SUR LES DONNÉES

1 class URLUpdate(UpdateView):
2 model = MiniURL
3 template_name = 'mini_url/nouveau.html'
4 form_class = MiniURLForm
5 success_url = reverse_lazy(liste)
6
7 def get_object(self , queryset=None):
8 code = self.kwargs.get('code', None)
9 return get_object_or_404(MiniURL , code=code)

Nous utilisons encore une fois la fonction get_object_or_404, qui nous permet de
renvoyer une page d’erreur si jamais le code demandé n’existe pas. Le code de l’adresse
est accessible depuis le dictionnaire self.kwargs, qui contient les arguments nommés
dans l’URL (précédemment, les arguments de ListView n’étaient pas nommés). Il faut
donc changer un peu urls.py également, pour accepter l’argument code, qui prend
des lettres et des chiffres :

1 url(r'^edition /(?P<code >\w{6})/$', URLUpdate.as_view (), name='
url_update '), # Le code est composé de 6 chiffres/lettres

Effectuer une action lorsque le formulaire est validé avec form_valid()

De la même façon, il est possible de changer le comportement lorsque le formulaire est
validé, en redéfinissant la méthode form_valid. Cette méthode est appelée dès qu’un
formulaire est soumis et considéré comme validé. Par défaut, il s’occupe d’enregistrer
les modifications et de rediriger l’utilisateur, mais vous pouvez très bien changer son
comportement :

1 def form_valid(self , form):
2 self.object = form.save()
3 messages.success(self.request , "Votre profil a été

mis à jour avec succès.") # Envoi d'un message à
l'utilisateur

4 return HttpResponseRedirect(self.get_success_url ())

Ici, nous précisons à l’utilisateur, au moyen d’une méthode particulière, que l’édition
s’est bien déroulée. Grâce à ce genre de méthodes, vous pouvez affiner le fonctionnement
de votre vue, tout en conservant la puissance de la généricité.

DeleteView

Pour terminer, attaquons-nous à la suppression d’un objet. Comme pour UpdateView,
cette vue prend un objet et demande la confirmation de suppression. Si l’utilisateur
confirme, alors la suppression est effectuée, puis l’utilisateur est redirigé. Les attributs
de la vue sont donc globalement identiques à ceux utilisés précédemment :

1 class URLDelete(DeleteView):
2 model = MiniURL

139

CHAPITRE 12. LES VUES GÉNÉRIQUES

3 context_object_name = "mini_url"
4 template_name = 'mini_url/supprimer.html'
5 success_url = reverse_lazy(liste)
6
7 def get_object(self , queryset=None):
8 code = self.kwargs.get('code', None)
9 return get_object_or_404(MiniURL , code=code)

Toujours pareil, la vue est associée à notre modèle, un template, et une URL à cibler
en cas de réussite. Nous avons encore une fois la sélection de notre objet via le code
assigné en base plutôt que la clé primaire. Cette fois-ci, nous devons créer notre template
supprimer.html, qui demandera juste à l’utilisateur s’il est sûr de vouloir supprimer,
et le cas échéant le redirigera vers la liste.

1 <h1>Êtes -vous sûr de vouloir supprimer cette URL ?</h1>
2
3 <p>{{ mini_url.code }} -> {{ mini_url.url }} (créée le {{

mini_url.date|date:"DATE_FORMAT" }}) </p>
4
5 <form method="post" action="">
6 {% csrf_token %} <!-- Nous prenons bien soin d’ajouter le

csrf_token -->
7 <input type="submit" value"Oui , supprime moi ça" /> - Pas trop chaud en fait
8 </form >

Encore une fois, notre ligne en plus dans le fichier urls.py ressemble beaucoup à celle
de URLUpdate :

1 url(r'^supprimer /(?P<code >\w{6})/$', URLDelete.as_view (), name=
'url_delete '), # Ne pas oublier l'import de URLDelete !

Afin de faciliter le tout, deux liens ont été ajoutés dans la liste définie dans le template
liste.html, afin de pouvoir mettre à jour ou supprimer une URL rapidement :

1 <h1>Le raccourcisseur d’URL spécial crêpes bretonnes !</h1>
2
3 <p>Raccourcir une URL.</p

>
4
5 <p>Liste des URL raccourcies :</p>
6
7 {% for mini in minis %}
8 Mettre à

jour -
Supprimer

9 | {{ mini.url }} via <a href="http ://{{ request.get_host
}}{% url "url_redirection" mini.code %}" >{{ request.
get_host }}{% url "url_redirection" mini.code %}

10 {% if mini.pseudo %}par {{ mini.pseudo }}{% endif %} ({{
mini.nb_acces }} accès)

140

AGIR SUR LES DONNÉES

11 {% empty %}
12 Il n’y en a pas actuellement .
13 {% endfor %}
14

Même refrain : nous enregistrons, et nous pouvons tester grâce au lien ajouté (voir la
figure 12.3).

Figure 12.3 – Notre vue, après avoir cliqué sur un des liens « Supprimer » qui appa-
raissent dans la liste

Ce chapitre touche à sa fin. Néanmoins, nous n’avons même pas pu vous présenter toutes
les spécificités des vues génériques ! Il existe en effet une multitude de classes de vues
génériques, mais aussi d’attributs et méthodes non abordés ici. Vous trouverez grâce au
code web suivant un diagramme UML des classes du module django.views.generic
qui montre bel et bien l’étendue du sujet.

B

�

�
	Diagramme UML

Code web : 121720
Nous avons essayé de vous présenter les plus communes, celles qui vous seront pro-
bablement le plus utile, mais il est clairement impossible de tout présenter sans être
indigeste, vu la taille de ce diagramme. Par exemple, nous avons décidé de ne pas cou-
vrir toutes les classes qui permettent de faire des pages de tri par date ou d’archives.
Cependant, si vous souhaitez en savoir plus, n’hésitez pas à consulter la documentation
officielle.

En résumé

– Django fournit un ensemble de classes permettant d’éviter de réécrire plusieurs fois
le même type de vue (affichage d’un template statique, liste d’objets, création d’ob-
jets. . .) ;

141

http://www.siteduzero.com/codeweb/121720

CHAPITRE 12. LES VUES GÉNÉRIQUES

– Les vues génériques peuvent être déclarées directement au sein de urls.py (cas le
plus pratique pour les TemplateView) ou dans views.py ;

– Chaque vue générique dispose d’un ensemble d’attributs permettant de définir ce
que doit faire la vue : modèle concerné, template à afficher, gestion de la pagination,
filtres. . . ;

– Il est possible d’automatiser les formulaires d’ajout, de mise à jour et de suppression
d’objets via des vues génériques ;

– Le module django.views.generic regorge de classes (plusieurs dizaines en tout),
n’hésitez pas à regarder si l’une d’entre elles fait ce que vous souhaitez avant de vous
lancer.

142

Chapitre 13
Techniques avancées dans les modèles

Difficulté :

D ans la partie précédente, nous avons vu comment créer, lier des modèles et faire des
requêtes sur ceux-ci. Cependant, les modèles ne se résument pas qu’à des opérations
basiques, Django propose en effet des techniques plus avancées qui peuvent se révéler

très utiles dans certaines situations. Ce sont ces techniques que nous aborderons dans ce
chapitre.

143

CHAPITRE 13. TECHNIQUES AVANCÉES DANS LES MODÈLES

Les requêtes complexes avec Q

Django propose un outil très puissant et utile, nommé Q, pour créer des requêtes com-
plexes sur des modèles. Il se peut que vous vous soyez demandé lors de l’introduction
aux requêtes comment formuler des requêtes avec la clause « OU » (OR en anglais ; par
exemple, la catégorie de l’article que je recherche doit être « Crêpes OU Bretagne »). Eh
bien, c’est ici qu’intervient l’objet Q ! Il permet aussi de créer des requêtes de manière
plus dynamique.

Avant tout, prenons un modèle simple pour illustrer nos exemples :

1 class Eleve(models.Model):
2 nom = models.CharField(max_length=31)
3 moyenne = models.IntegerField(default=10)
4
5 def __unicode__(self):
6 return u"Élève {0} ({1}/20 de moyenne)".format(self.nom

, self.moyenne)

Ajoutons quelques élèves dans la console interactive (manage.py shell) :

1 >>> from test.models import Eleve
2 >>> Eleve(nom="Mathieu",moyenne=18).save()
3 >>> Eleve(nom="Maxime",moyenne=7).save() # Le vilain petit

canard !
4 >>> Eleve(nom="Thibault",moyenne=10).save()
5 >>> Eleve(nom="Sofiane",moyenne=10).save()

Pour créer une requête dynamique, rien de plus simple, nous pouvons formuler une
condition avec un objet Q ainsi :

1 >>> from django.db.models import Q
2 >>> Q(nom="Maxime")
3 <django.db.models.query_utils.Q object at 0x222f650 > # Nous

voyons bien que nous possédons ici un objet de la classe Q
4 >>> Eleve.objects.filter(Q(nom="Maxime"))
5 [<Eleve: Élève Maxime (7/20 de moyenne)>]
6 >>> Eleve.objects.filter(nom="Maxime")
7 [<Eleve: Élève Maxime (7/20 de moyenne)>]

En réalité, les deux dernières requêtes sont équivalentes.

Quel intérêt d’utiliser Q dans ce cas ?

Comme dit plus haut, il est possible de construire une clause « OU » à partir de Q :

1 Eleve.objects.filter(Q(moyenne__gt=16) | Q(moyenne__lt=8)) #
Nous prenons les moyennes strictement au-dessus de 16 ou en
dessous de 8

144

LES REQUÊTES COMPLEXES AVEC Q

2 [<Eleve: Élève Mathieu (18/20 de moyenne)>, <Eleve: Élève
Maxime (7/20 de moyenne) >]

L’opérateur | est généralement connu comme l’opérateur de disjonction (« OU ») dans
l’algèbre de Boole, il est repris ici par Django pour désigner cette fois l’opérateur « OR »
du langage SQL.

Sachez qu’il est également possible d’utiliser l’opérateur & pour signifier « ET » :

1 >>> Eleve.objects.filter(Q(moyenne=10) & Q(nom="Sofiane"))
2 [<Eleve: Élève Sofiane (10/20 de moyenne)>]

Néanmoins, cet opérateur n’est pas indispensable, car il suffit de séparer les objets Q
avec une virgule, le résultat est identique :

1 >>> Eleve.objects.filter(Q(moyenne=10),Q(nom="Sofiane"))
2 [<Eleve: Élève Sofiane (10/20 de moyenne)>]

Il est aussi possible de prendre la négation d’une condition. Autrement dit, demander
la condition inverse (« NOT » en SQL). Cela se fait en faisant précéder un objet Q dans
une requête par le caractère ~.

1 >>> Eleve.objects.filter(Q(moyenne=10),~Q(nom="Sofiane"))
2 [<Eleve: Élève Thibault (10/20 de moyenne)>]

Pour aller plus loin, construisons quelques requêtes dynamiquement !

Tout d’abord, il faut savoir qu’un objet Q peut se construire de la façon suivante :
Q((’moyenne’,10)), ce qui est identique à Q(moyenne=10).

Quel intérêt ? Imaginons que nous devions obtenir les objets qui remplissent une des
conditions dans la liste suivante :

1 conditions = [('moyenne ',15), ('nom','Thibault '), ('moyenne ',
18)]

Nous pouvons construire plusieurs objets Q de la manière suivante :

1 objets_q = [Q(x) for x in conditions]

et les incorporer dans une requête ainsi (avec une clause « OU ») :

1 import operator
2 Eleve.objects.filter(reduce(operator.or_ , objets_q))
3 [<Eleve: Élève Mathieu (18/20 de moyenne)>, <Eleve: Élève

Thibault (15/20 de moyenne)>]

Que sont reduce et operator.or_ ?

reduce est une fonction par défaut de Python qui permet d’appliquer une fonction à
plusieurs valeurs successivement. Petit exemple pour comprendre plus facilement :

145

CHAPITRE 13. TECHNIQUES AVANCÉES DANS LES MODÈLES

reduce(lambda x, y: x+y, [1, 2, 3, 4, 5]) va calculer ((((1+2)+3)+4)+5), donc
15. La même chose sera faite ici, mais avec l’opérateur « OU » qui est accessible depuis
operator.or_. En réalité, Python va donc faire :

1 Eleve.objects.filter(objets_q[0] | objets_q[1] | objets_q[2])

C’est une méthode très puissante et très pratique !

L’agrégation

Il est souvent utile d’extraire une information spécifique à travers plusieurs entrées d’un
seul et même modèle. Si nous reprenons nos élèves de la sous-partie précédente, leur
professeur aura plus que probablement un jour besoin de calculer la moyenne globale
des élèves. Pour ce faire, Django fournit plusieurs outils qui permettent de tels calculs
très simplement. Il s’agit de la méthode d’agrégation.

En effet, si nous voulons obtenir la moyenne des moyennes de nos élèves (pour rappel,
Mathieu (moyenne de 18), Maxime (7), Thibault (10) et Sofiane(10)), nous pouvons
procéder à partir de la méthode aggregate :

1 from django.db.models import Avg
2 >>> Eleve.objects.aggregate(Avg('moyenne '))
3 {'moyenne__avg ': 11.25}

En effet, (18+7+10+10)/4 = 11,25 ! Cette méthode prend à chaque fois une fonction
spécifique fournie par Django, comme Avg (pour Average, signifiant « moyenne » en
anglais) et s’applique sur un champ du modèle. Cette fonction va ensuite parcourir
toutes les entrées du modèle et effectuer les calculs propres à celle-ci.

Notons que la valeur retournée par la méthode est un dictionnaire, avec à chaque fois
une clé générée automatiquement à partir du nom de la colonne utilisée et de la fonction
appliquée (nous avons utilisé la fonction Avg dans la colonne ’moyenne’, Django renvoie
donc ’moyenne__avg’), avec la valeur calculée correspondante (ici 11,25 donc).

Il existe d’autres fonctions comme Avg, également issues de django.db.models, dont
notamment :

– Max : prend la plus grande valeur ;
– Min : prend la plus petite valeur ;
– Count : compte le nombre d’entrées.

Il est même possible d’utiliser plusieurs de ces fonctions en même temps :

1 >>> Eleve.objects.aggregate(Avg('moyenne '), Min('moyenne '), Max
('moyenne '))

2 {'moyenne__max ': 18 , 'moyenne__avg ': 11.25 , 'moyenne__min ': 7}

Si vous souhaitez préciser une clé spécifique, il suffit de la faire précéder de la fonction :

1 >>> Eleve.objects.aggregate(Moyenne=Avg('moyenne '), Minimum=Min
('moyenne '), Maximum=Max('moyenne '))

2 {'Minimum ': 7, 'Moyenne ': 11.25 , 'Maximum ': 18}

146

L’AGRÉGATION

Bien évidemment, il est également possible d’appliquer une agrégation sur un QuerySet
obtenu par la méthode filter par exemple :

1 >>> Eleve.objects.filter(nom__startswith="Ma").aggregate(Avg('
moyenne '), Count('moyenne '))

2 {'moyenne__count ': 2, 'moyenne__avg ': 12.5}

Étant donné qu’il n’y a que Mathieu et Maxime comme prénoms qui commencent par
« Ma », uniquement ceux-ci seront sélectionnés, comme l’indique moyenne__count.

En réalité, la fonction Count est assez inutile ici, d’autant plus qu’une méthode pour
obtenir le nombre d’entrées dans un QuerySet existe déjà :

1 >>> Eleve.objects.filter(nom__startswith="Ma").count()
2 2

Cependant, cette fonction peut se révéler bien plus intéressante lorsque nous l’utilisons
avec des liaisons entre modèles. Pour ce faire, ajoutons un autre modèle :

1 class Cours(models.Model):
2 nom = models.CharField(max_length=31)
3 eleves = models.ManyToManyField(Eleve)
4
5 def __unicode__(self):
6 return self.nom

Créons deux cours :

1 >>> c1 = Cours(nom="Maths")
2 >>> c1.save()
3 >>> c1.eleves.add(*Eleve.objects.all())
4 >>> c2 = Cours(nom="Anglais")
5 >>> c2.save()
6 >>> c2.eleves.add(*Eleve.objects.filter(nom__startswith="Ma"))

Il est tout à fait possible d’utiliser les agrégations depuis des liaisons comme une Fo‌
reignKey, ou comme ici avec un ManyToManyField :

1 >>> Cours.objects.aggregate(Max("eleves__moyenne"))
2 {'eleves__moyenne__max ': 18}

Nous avons été chercher la meilleure moyenne parmi les élèves de tous les cours enre-
gistrés.

Il est également possible de compter le nombre d’affiliations à des cours :

1 >>> Cours.objects.aggregate(Count("eleves"))
2 {'eleves__count ': 6}

En effet, nous avons 6 « élèves », à savoir 4+2, car Django ne vérifie pas si un élève est
déjà dans un autre cours ou non.

Pour terminer, abordons une dernière fonctionnalité utile. Il est possible d’ajouter des
attributs à un objet selon les objets auxquels il est lié. Nous parlons d’annotation.
Exemple :

147

CHAPITRE 13. TECHNIQUES AVANCÉES DANS LES MODÈLES

1 >>> Cours.objects.annotate(Avg("eleves__moyenne"))[0].
eleves__moyenne__avg

2 11.25

Un nouvel attribut a été créé. Au lieu d’être retournées dans un dictionnaire, les valeurs
sont désormais directement ajoutées à l’objet lui-même. Il est bien évidemment possible
de redéfinir le nom de l’attribut comme vu précédemment :

1 >>> Cours.objects.annotate(Moyenne=Avg("eleves__moyenne"))[1].
Moyenne

2 12.5

Et pour terminer en beauté, il est même possible d’utiliser l’attribut créé dans des
méthodes du QuerySet comme filter, exclude ou order_by ! Par exemple :

1 >>> Cours.objects.annotate(Moyenne=Avg("eleves__moyenne")).
filter(Moyenne__gte=12)

2 [<Cours: Anglais >]

En définitive, l’agrégation et l’annotation sont des outils réellement puissants qu’il ne
faut pas hésiter à utiliser si l’occasion se présente !

L’héritage de modèles

Les modèles étant des classes, ils possèdent les mêmes propriétés que n’importe quelle
classe, y compris l’héritage de classes. Néanmoins, Django propose trois méthodes prin-
cipales pour gérer l’héritage de modèles, qui interagiront différemment avec la base de
données. Nous les aborderons ici une à une.

Les modèles parents abstraits

Les modèles parents abstraits sont utiles lorsque vous souhaitez utiliser plusieurs mé-
thodes et attributs dans différents modèles, sans devoir les réécrire à chaque fois. Tout
modèle héritant d’un modèle abstrait récupère automatiquement toutes les caractéris-
tiques de la classe dont elle hérite. La grande particularité d’un modèle abstrait réside
dans le fait que Django ne l’utilisera pas comme représentation pour créer une table
dans la base de données. En revanche, tous les modèles qui hériteront de ce parent
abstrait auront bel et bien une table qui leur sera dédiée.

Afin de rendre un modèle abstrait, il suffit de lui assigner l’attribut abstract=True
dans sa sous-classe Meta. Django se charge entièrement du reste.

Pour illustrer cette méthode, prenons un exemple simple :

1 class Document(models.Model):
2 titre = models.CharField(max_length=255)
3 date_ajout = models.DateTimeField(auto_now_add=True ,

verbose_name="Date d'ajout du document")

148

L’HÉRITAGE DE MODÈLES

4 auteur = models.CharField(max_length=255 , null=True , blank=
True)

5
6 class Meta:
7 abstract = True
8
9 class Article(Document):

10 contenu = models.TextField ()
11
12 class Image(Document):
13 image = models.ImageField(upload_to="images")

Ici, deux tables seront créées dans la base de données : Article et Image. Le modèle
Document ne sera pas utilisé comme table, étant donné que celui-ci est abstrait. En
revanche, les tables Article et Image auront bien les champs de Document (donc par
exemple la table Article aura les champs titre, date_ajout, auteur et contenu).

Bien entendu, il est impossible de faire des requêtes sur un modèle abstrait, celui-ci
n’ayant aucune table dans la base de données pour enregistrer des données. Vous ne
pouvez interagir avec les champs du modèle abstrait que depuis les modèles qui en
héritent.

Les modèles parents classiques

Contrairement aux modèles abstraits, il est possible d’hériter de modèles tout à fait
normaux. Si un modèle hérite d’un autre modèle non abstrait, il n’y aura aucune
différence pour ce dernier, il sera manipulable comme n’importe quel modèle. Django
créera une table pour le modèle parent et le modèle enfant.

Prenons un exemple simple :

1 class Lieu(models.Model):
2 nom = models.CharField(max_length=50)
3 adresse = models.CharField(max_length=100)
4
5 def __unicode__(self):
6 return self.nom
7
8 class Restaurant(Lieu):
9 menu = models.TextField ()

À partir de ces deux modèles, Django créera bien deux tables, une pour Lieu, l’autre
pour Restaurant. Il est important de noter que la table Restaurant ne contient pas
les champs de Lieu (à savoir nom et adresse). En revanche, elle contient bien le champ
menu et une clé étrangère vers Lieu que le framework ajoutera tout seul. En effet, si
Lieu est un modèle tout à fait classique, Restaurant agira un peu différemment.

Lorsque nous sauvegardons une nouvelle instance de Restaurant dans la base de don-
nées, une nouvelle entrée sera créée dans la table correspondant au modèle Restaurant,
mais également dans celle correspondant à Lieu. Les valeurs des deux attributs nom et

149

CHAPITRE 13. TECHNIQUES AVANCÉES DANS LES MODÈLES

adresse seront enregistrées dans une entrée de la table Lieu, et l’attribut menu sera
enregistré dans une entrée de la table Restaurant. Cette dernière entrée contiendra
donc également la clé étrangère vers l’entrée dans la table Lieu qui possède les données
associées.

Pour résumer, l’héritage classique s’apparente à la liaison de deux classes avec une clé
étrangère telle que nous en avons vu dans le chapitre introductif sur les modèles, à la
différence que c’est Django qui se charge de réaliser lui-même cette liaison.

Sachez aussi que lorsque vous créez un objet Restaurant, vous créez aussi un objet
Lieu tout à fait banal qui peut être obtenu comme n’importe quel objet Lieu créé
précédemment. De plus, même si les attributs du modèle parent sont dans une autre
table, le modèle fils a bien hérité de toutes ses méthodes et attributs :

1 >>> Restaurant(nom=u"La crêperie bretonne",adresse="42 Rue de
la crêpe 35000 Rennes", menu=u"Des crêpes !").save()

2 >>> Restaurant.objects.all()
3 [<Restaurant: La crêperie bretonne >]
4 >>> Lieu.objects.all()
5 [<Lieu: La crêperie bretonne >]

Pour finir, tous les attributs de Lieu sont directement accessibles depuis un objet
Restaurant :

1 >>> resto = Restaurant.objects.all()[0]
2 >>> print resto.nom+", "+resto.menu
3 La crêperie bretonne , Des crêpes !

En revanche, il n’est pas possible d’accéder aux attributs spécifiques de Restaurant
depuis une instance de Lieu :

1 >>> lieu = Lieu.objects.all()[0]
2 >>> print lieu.nom
3 La crêperie bretonne
4 >>> print lieu.menu #Ça ne marche pas
5 Traceback (most recent call last):
6 File "<console >", line 1, in <module >
7 AttributeError: 'Lieu' object has no attribute 'menu'

Pour accéder à l’instance de Restaurant associée à Lieu, Django crée tout seul une
relation vers celle-ci qu’il nommera selon le nom de la classe fille :

1 >>> print type(lieu.restaurant)
2 <class 'blog.models.Restaurant '>
3 >>> print lieu.restaurant.menu
4 Des crêpes !

Les modèles proxy

Dernière technique d’héritage avec Django, et probablement la plus complexe, il s’agit
de modèles proxy (en français, des modèles « passerelles »).

150

L’APPLICATION CONTENTTYPE

Le principe est trivial : un modèle proxy hérite de tous les attributs et méthodes du
modèle parent, mais aucune table ne sera créée dans la base de données pour le modèle
fils. En effet, le modèle fils sera en quelque sorte une passerelle vers le modèle parent
(tout objet créé avec le modèle parent sera accessible depuis le modèle fils, et vice-
versa).

Quel intérêt ? À première vue, il n’y en a pas, mais pour quelque raison de structure du
code, d’organisation, etc., nous pouvons ajouter des méthodes dans le modèle proxy,
ou modifier des attributs de la sous-classe Meta sans que le modèle d’origine ne soit
altéré, et continuer à utiliser les mêmes données.

Petit exemple de modèle proxy qui hérite du modèle Restaurant que nous avons défini
tout à l’heure (notons qu’il est possible d’hériter d’un modèle qui hérite lui-même d’un
autre !) :

1 class RestoProxy(Restaurant):
2 class Meta:
3 proxy = True # Nous spécifions qu'il s'agit d'un proxy
4 ordering = ["nom"] # Nous changeons le tri par défaut ,

tous les QuerySet seront triés selon le nom de
chaque objet

5
6 def crepes(self):
7 if u"crêpe" in self.menu: #Il y a des crêpes dans le

menu
8 return True
9 return False

Depuis ce modèle, il est donc possible d’accéder aux données enregistrées du modèle
parent, tout en bénéficiant des méthodes et attributs supplémentaires :

1 >>> from blog.models import RestoProxy
2 >>> print RestoProxy.objects.all()
3 [<RestoProxy: La crêperie bretonne >]
4 >>> resto = RestoProxy.objects.all()[0]
5 >>> print resto.adresse
6 42 Rue de la crêpe 35000 Rennes
7 >>> print resto.crepes ()
8 True

L’application ContentType

Il est possible qu’un jour vous soyez amenés à devoir jouer avec des modèles. Non pas
avec des instances de modèles, mais des modèles mêmes.

En effet, jusqu’ici, nous avons pu lier des entrées à d’autres entrées (d’un autre type
de modèle éventuellement) avec des liaisons du type ForeignKey, OneToOneField ou
ManyToManyField. Néanmoins, Django propose un autre système qui peut se révéler
parfois utile : la liaison d’une entrée de modèle à un autre modèle en lui-même. Si

151

CHAPITRE 13. TECHNIQUES AVANCÉES DANS LES MODÈLES

l’intérêt d’une telle relation n’est pas évident à première vue, nous pouvons pourtant
vous assurer qu’il existe, et nous vous l’expliquerons par la suite. Ce genre de relation
est possible grâce à ce que nous appelons des ContentTypes.

Avant tout, il faut s’assurer que l’application ContentTypes de Django est bien instal-
lée. Elle l’est par défaut, néanmoins, si vous avez supprimé certaines entrées de votre
variable INSTALLED_APPS dans le fichier settings.py, il est toujours utile de vérifier
si le tuple contient bien l’entrée ’django.contrib.contenttypes’. Si ce n’est pas le
cas, ajoutez-la.

Un ContentType est en réalité un modèle assez spécial. Ce modèle permet de repré-
senter un autre modèle installé. Par exemple, nous avons déclaré plus haut le modèle
Eleve. Voici sa représentation depuis un ContentType :
1 >>> from blog.models import Eleve
2 >>> from django.contrib.contenttypes.models import ContentType
3 >>> ct = ContentType.objects.get(app_label="blog", model="eleve

")
4 >>> ct
5 <ContentType: eleve >

Désormais, notre variable ct représente le modèle Eleve. Que pouvons-nous en faire ?
Le modèle ContentType possède deux méthodes :

– model_class : renvoie la classe du modèle représenté ;
– get_object_for_this_type : il s’agit d’un raccourci vers la méthode objects.get

du modèle. Cela évite de faire ct.model_class().objects.get(attr=arg).

Illustration :
1 >>> ct.model_class ()
2 <class 'blog.models.Eleve'>
3 >>> ct.get_object_for_this_type(nom="Maxime")
4 <Eleve: Élève Maxime (7/20 de moyenne)>

Maintenant que le fonctionnement des ContentType vous semble plus familier, passons
à leur utilité. À quoi servent-ils ? Imaginons que vous deviez implémenter un système de
commentaires, mais que ces commentaires ne se restreignent pas à un seul modèle. En
effet, vous souhaitez que vos utilisateurs puissent commenter vos articles, vos images,
vos vidéos, ou même des commentaires eux-mêmes.

Une première solution serait de faire hériter tous vos modèles d’un modèle parent nom-
mée Document (un peu comme démontré ci-dessus) et de créer un modèle Commentaire
avec une ForeignKey vers Document. Cependant, vous avez déjà écrit vos modèles Ar‌
ticle, Image, Video, et ceux-ci n’héritent pas d’une classe commune comme Document.
Vous n’avez pas envie de devoir réécrire tous vos modèles, votre code, adapter votre
base de données, etc. La solution magique ? Les relations génériques des ContentTypes.

Une relation générique d’un modèle est une relation permettant de lier une entrée
d’un modèle défini à une autre entrée de n’importe quel modèle. Autrement dit, si
notre modèle Commentaire possède une relation générique, nous pourrions le lier à un
modèle Image, Video, Commentaire. . . ou n’importe quel autre modèle installé, sans la
moindre restriction.

152

L’APPLICATION CONTENTTYPE

Voici une ébauche de ce modèle Commentaire avec une relation générique :

1 from django.contrib.contenttypes.models import ContentType
2 from django.contrib.contenttypes import generic
3
4 class Commentaire(models.Model):
5 auteur = models.CharField(max_length=255)
6 contenu = models.TextField ()
7 content_type = models.ForeignKey(ContentType)
8 object_id = models.PositiveIntegerField ()
9 content_object = generic.GenericForeignKey('content_type ',

'object_id ')
10
11 def __unicode__(self):
12 return "Commentaire de {0} sur {1}".format(self.auteur ,

self.content_object)

La relation générique est ici l’attribut content_object, avec le champ GenericForei‌
gnKey. Cependant, vous avez sûrement remarqué l’existence de deux autres champs :
content_type et object_id. À quoi servent-ils ?

Auparavant, avec une ForeignKey classique, tout ce qu’il fallait indiquer était, dans la
déclaration du modèle, la classe à laquelle la clé serait liée, et lors de la déclaration de
l’instance, l’entrée de l’autre modèle à laquelle la clé serait liée, cette dernière contenant
alors l’ID de l’entrée associée.

Le fonctionnement est similaire ici, à une exception près : le modèle associé n’est pas
défini lors de la déclaration de la classe (vu que ce modèle peut être n’importe lequel).
Dès lors, il nous faut un champ supplémentaire pour représenter ce modèle, et ceci se fait
grâce à un ContentType (que nous avons déjà expliqué). Si nous avons le modèle, il ne
nous manque plus que l’ID de l’entrée pour pouvoir la récupérer. C’est ici qu’intervient
le champ object_id, qui est juste un entier positif, contenant donc l’ID de l’entrée.

Dès lors, le champ content_object, la relation générique, est en fait une sorte de
produit des deux autres champs. Il va aller chercher le type de modèle associé dans
content_type, et l’ID de l’entrée associée dans object_id. Finalement, la relation
générique va aller dans la table liée au modèle obtenu, chercher l’entrée ayant l’ID
obtenu, et renvoyer la bonne entrée. C’est pour cela qu’il faut indiquer à la relation
générique lors de son initialisation les deux attributs depuis lesquels elle va pouvoir
aller chercher le modèle et l’ID.

Maintenant que la théorie est explicitée, prenons un petit exemple pratique :

1 >>> from blog.models import Commentaire , Eleve
2 >>> e = Eleve.objects.get(nom="Sofiane")
3 >>> c = Commentaire.objects.create(auteur="Le professeur",

contenu="Sofiane ne travaille pas assez.", content_object=e)
4 >>> c.content_object
5 <Eleve: Élève Sofiane (10/20 de moyenne)>
6 >>> c.object_id
7 4
8 >>> c.content_type.model_class ()

153

CHAPITRE 13. TECHNIQUES AVANCÉES DANS LES MODÈLES

9 <class 'blog.models.Eleve'>

Lors de la création d’un commentaire, il n’y a pas besoin de remplir les champs ob‌
ject_id et content_type. Ceux-ci seront automatiquement déduits de la variable
donnée à content_object. Bien évidemment, vous pouvez adresser n’importe quelle
entrée de n’importe quel modèle à l’attribut content_object, cela marchera !

Avant de terminer, sachez qu’il est également possible d’ajouter une relation générique
« en sens inverse ». Contrairement à une ForeignKey classique, aucune relation inverse
n’est créée. Si vous souhaitez tout de même en créer une sur un modèle bien précis, il
suffit d’ajouter un champ nommé GenericRelation.

Si nous reprenons le modèle Eleve modifié :
1 from django.contrib.contenttypes import generic
2
3 class Eleve(models.Model):
4 nom = models.CharField(max_length=31)
5 moyenne = models.IntegerField(default=10)
6 commentaires = models.GenericRelation(Commentaire)
7
8 def __unicode__(self):
9 return u"Élève {0} ({1}/20 de moyenne)".format(self.nom

, self.moyenne)

Dès lors, le champ commentaires contient tous les commentaires adressés à l’élève :
1 >>> e.commentaires.all()
2 [u"Commentaire de Le professeur sur Élève Sofiane (10/20 de

moyenne)"]

Sachez que si vous avez utilisé des noms différents que content_type et object_id
pour construire votre GenericForeignKey, vous devez également le spécifier lors de la
création de la GenericRelation :
1 commentaires = models.GenericRelation(Commentaire ,
2 content_type_field="le_champ_du_content_type",
3 object_id_field="le champ_de_l_id")

En résumé

– La classe Q permet d’effectuer des requêtes complexes avec les opérateurs « OU »,
« ET » et « NOT ».

– Avg, Max et Min permettent d’obtenir respectivement la moyenne, le maximum et le
minimum d’une certaine colonne dans une table. Elles peuvent être combinées avec
Count pour déterminer le nombre de lignes retournées.

– L’héritage de modèles permet de factoriser des modèles ayant des liens entre eux. Il
existe plusieurs types d’héritage : abstrait, classique et les modèles proxy.

– L’application ContentType permet de décrire un modèle et de faire des relations
génériques avec vos autres modèles (pensez à l’exemple des commentaires !).

154

Chapitre 14
Simplifions nos templates : filtres, tags
et contextes

Difficulté :

C omme nous l’avons vu rapidement dans le premier chapitre sur les templates, Django
offre une panoplie de filtres et de tags. Cependant, il se peut que vous ayez un jour un
besoin particulier impossible à combler avec les filtres et tags de base. Heureusement,

Django permet également de créer nos propres filtres et tags, et même de générer des
variables par défaut lors de la construction d’un template (ce que nous appelons le contexte
du template). Nous aborderons ces différentes possibilités dans ce chapitre.

155

CHAPITRE 14. SIMPLIFIONS NOS TEMPLATES : FILTRES, TAGS ET
CONTEXTES

Préparation du terrain : architecture des filtres et tags

Pour construire nos propres filtres et tags, Django impose que ces derniers soient pla-
cés dans une application, tout comme les vues ou les modèles. À partir d’ici, nous
retrouvons deux écoles dans la communauté de Django :

– Soit votre fonctionnalité est propre à une application (par exemple un filtre utilisé
uniquement lors de l’affichage d’articles), dans ce cas vous pouvez directement le(s)
placer au sein de l’application concernée ; nous préférons cette méthode ;

– Soit vous créez une application à part, qui regroupe tous vos filtres et tags person-
nalisés.

Une fois ce choix fait, la procédure est identique : l’application choisie doit contenir
un dossier nommé templatetags (attention au s final !), dans lequel il faut créer un
fichier Python par groupe de filtres/tags (plus de détails sur l’organisation de ces fichiers
viendront plus tard).

Le dossier templatetags doit en réalité être un module Python classique
afin que les fichiers qu’il contient puissent être importés. Il est donc impératif
de créer un fichier __init__.py vide, sans quoi Django ne pourra rien faire.

La nouvelle structure de l’application « blog » est donc la suivante :

1 blog/
2 __init__.py
3 models.py
4 templatetags/
5 __init__.py # À ne pas oublier
6 blog_extras.py
7 views.py

Une fois les fichiers créés, il est nécessaire de spécifier une instance de classe qui nous
permettra d’enregistrer nos filtres et tags, de la même manière que dans nos fichiers
admin.py avec admin.site.register(). Pour ce faire, il faut déclarer les deux lignes
suivantes au début du fichier blog_extras.py :

1 from django import template
2
3 register = template.Library ()

L’application incluant les templatetags doit être incluse dans le fameux INSTALLED_APPS
de notre settings.py, si vous avez décidé d’ajouter vos tags et filtres personnalisés
dans une application spécifique. Une fois les nouveaux tags et filtres codés, il sera
possible de les intégrer dans n’importe quel template du projet via la ligne suivante :

1 {% load blog_extras %}

156

PERSONNALISER L’AFFICHAGE DE DONNÉES AVEC NOS PROPRES
FILTRES

Le nom blog_extras vient du nom de fichier que nous avons renseigné plus
haut, à savoir blog_extras.py.

Tous les dossiers templatetags de toutes les applications partagent le même
espace de noms. Si vous utilisez des filtres et tags de plusieurs applications,
veillez à ce que leur noms de fichiers soient différents, afin qu’il n’y ait pas
de conflit.

Nous pouvons désormais entrer dans le vif du sujet, à savoir la création de filtres et de
tags !

Personnaliser l’affichage de données avec nos propres
filtres

Commençons par les filtres. En soi, un filtre est une fonction classique qui prend 1 ou
2 arguments :

– La variable à afficher, qui peut être n’importe quel objet en Python ;
– Et de façon facultative, un paramètre.

Comme petit rappel au cas où vous auriez la mémoire courte, voici deux filtres : l’un
sans paramètre, le deuxième avec.
1 {{ texte|upper }} -> Filtre upper sur la variable "

texte"
2 {{ texte|truncatewords:80 }} -> Filtre truncatewords , avec

comme argument "80" sur la variable "texte"

Les fonctions Python associées à ces filtres ne sont appelées qu’au sein du template.
Pour cette raison, il faut éviter de lancer des exceptions, et toujours renvoyer un résul-
tat. En cas d’erreur, il est plus prudent de renvoyer l’entrée de départ ou une chaîne
vide, afin d’éviter des effets de bord lors du « chaînage » de filtres par exemple.

Un premier exemple de filtre sans argument

Attaquons la réalisation de notre premier filtre. Pour commencer, prenons comme
exemple le modèle « Citation » de Wikipédia : nous allons encadrer la chaîne four-
nie par des guillemets français doubles.

B

�

�
	Voir le modèle

Code web : 531146
Ainsi, si dans notre template nous avons {{ "Bonjour le monde !"|citation }}, le
résultat dans notre page sera « Bonjour le monde ! ».

Pour ce faire, il faut ajouter une fonction nommée citation dans blog_extras.py.
Cette fonction n’a pas d’argument particulier et son écriture est assez intuitive :

157

http://www.siteduzero.com/codeweb/531146

CHAPITRE 14. SIMPLIFIONS NOS TEMPLATES : FILTRES, TAGS ET
CONTEXTES

1 def citation(texte):
2 """
3 Affiche le texte passé en paramètre , encadré de guillemets

français
4 doubles et d'espaces insécables
5 """
6 return "« %s »" % texte

Une fois la fonction écrite, il faut préciser au framework d’attacher cette méthode au
filtre qui a pour nom citation. Encore une fois, il y a deux façons différentes de
procéder :

– Soit en ajoutant la ligne @register.filter comme décorateur de la fonction. L’ar-
gument name peut être indiqué pour choisir le nom du filtre ;

– Soit en appelant la méthode register.filter(’citation’, citation).

Notons qu’avec ces deux méthodes le nom du filtre n’est donc pas directement lié au
nom de la fonction, et cette dernière aurait pu s’appeler filtre_citation ou autre,
cela n’aurait posé aucun souci tant qu’elle est correctement renseignée par la suite.

Ainsi, ces trois fonctions sont équivalentes :

1 #-*- coding:utf -8 -*-
2 from django import template
3
4 register = template.Library ()
5
6 @register.filter
7 def citation(texte):
8 """
9 Affiche le texte passé en paramètre , encadré de guillemets

français
10 doubles et d'espaces insécables
11 """
12 return "« %s »" % texte
13
14 @register.filter(name='citation_nom_different ')
15 def citation2(texte):
16 """ [...] """
17 return "« %s »" % texte
18
19 def citation3(texte):
20 """ [...] """
21 return "« %s »" % texte
22
23 register.filter('citation3 ', citation3)

Par commodité, nous n’utiliserons plus que les première et deuxième méthodes
dans ce cours. La dernière est pour autant tout à fait valide, libre à vous de
l’utiliser si vous préférez celle-ci.

158

PERSONNALISER L’AFFICHAGE DE DONNÉES AVEC NOS PROPRES
FILTRES

Nous pouvons maintenant essayer le nouveau filtre dans un template. Il faut tout
d’abord charger les filtres dans notre template, via le tag load, introduit récemment,
puis appeler notre filtre citation sur une chaîne de caractères quelconque :

1 {% load blog_extras %}
2 Un jour , une certaine personne m’a dit : {{ "Bonjour le monde !

"|citation }}

Et là. . . c’est le drame ! En effet, voici le résultat à la figure 14.1.

Figure 14.1 – Le résultat incorrect de notre filtre

Mais pourquoi les espaces insécables sont-elles échappées ?

Par défaut, Django échappe automatiquement tous les caractères spéciaux des chaînes
de caractères affichées dans un template, ainsi que le résultat des filtres. Nous allons
donc devoir préciser au framework que le résultat de notre filtre est contrôlé et sécurisé,
et qu’il n’est pas nécessaire de l’échapper. Pour cela, il est nécessaire de transformer
un peu l’enregistrement de notre fonction avec register. La méthode filter peut
prendre comme argument is_safe, qui permet de signaler au framework par la suite
que notre chaîne est sûre :

1 @register.filter(is_safe=True)
2 def citation(texte):
3 """
4 Affiche le texte passé en paramètre , encadré de guillemets

français
5 doubles et d'espaces insécables
6 """
7 return "« %s »" % texte

De cette façon, tout le HTML renvoyé par le filtre est correctement interprété et nous
obtenons le résultat voulu (voir la figure 14.2).

Figure 14.2 – Le résultat correct de notre filtre

Cependant, un problème se pose avec cette méthode. En effet, si du HTML est présent
dans la chaîne donnée en paramètre, il sera également interprété. Ainsi, si dans le
template nous remplaçons l’exemple précédent par {{ "Bonjour
le monde !"|citation }}, alors le mot « Bonjour » sera en gras. En soi, ce n’est pas
un problème si vous êtes sûrs de la provenance de la chaîne de caractères. Il se pourrait
en revanche que, parfois, vous deviez afficher des données entrées par vos utilisateurs,

159

CHAPITRE 14. SIMPLIFIONS NOS TEMPLATES : FILTRES, TAGS ET
CONTEXTES

et à ce moment-là n’importe quel visiteur mal intentionné pourrait y placer du code
HTML dangereux, ce qui conduirait à des failles de sécurité.

Pour éviter cela, nous allons échapper les caractères spéciaux de notre argument de
base. Cela peut être fait via la fonction espace du module django.utils.html. Au
final, voici ce que nous obtenons :

1 #-*- coding:utf -8 -*-
2 from django import template
3 from django.utils.html import escape
4
5 register = template.Library ()
6
7 @register.filter(is_safe=True)
8 def citation(texte):
9 """

10 Affiche le texte passé en paramètre , encadré de guillemets
français

11 doubles et d'espaces insécables.
12 """
13 return "« %s »" % escape(texte)

Finalement, notre chaîne est encadrée de guillemets et d’espaces insécables corrects,
mais l’intérieur du message est tout de même échappé.

Un filtre avec arguments

Nous avons pour le moment traité uniquement le cas des filtres sans paramètre. Ce-
pendant, il peut arriver que l’affichage doive être différent selon un paramètre spécifié,
et ce indépendamment de la variable de base. Un exemple parmi tant d’autres est la
troncature de texte, il existe même déjà un filtre pour couper une chaîne à une certaine
position. Nous allons ici plutôt réaliser un filtre qui va couper une chaîne après un
certain nombre de caractères, mais sans couper en plein milieu d’un mot.

Comme nous l’avons précisé tout à l’heure, la forme d’un filtre avec un argument est
la suivante :

1 {{ ma_chaine|smart_truncate:40 }}

Nous souhaitons ici appeler un nouveau filtre smart_truncate sur la variable ma_chaine,
tout en lui passant en argument le nombre 40. La structure du filtre sera similaire à
l’exemple précédent. Il faudra cependant bien vérifier que le paramètre est bien un
nombre et qu’il y a des caractères à tronquer. Voici un début de fonction :

1 def smart_truncate(texte , nb_caracteres):
2
3 # Nous vérifions tout d'abord que l'argument passé est bien

un nombre
4 try:
5 nb_caracteres = int(nb_caracteres)
6 except ValueError:

160

PERSONNALISER L’AFFICHAGE DE DONNÉES AVEC NOS PROPRES
FILTRES

7 return texte # Retour de la chaîne originale sinon
8
9 # Si la chaîne est plus petite que le nombre de caractères

maximum voulus ,
10 # nous renvoyons directement la chaîne telle quelle.
11 if len(texte) <= nb_caracteres:
12 return texte
13
14 # [...]

La suite de la fonction est tout aussi classique : nous coupons notre chaîne au nombre
de caractères maximum voulu, et nous retirons la dernière suite de lettres, si jamais
cette chaîne est coupée en plein milieu d’un mot :

1 def smart_truncate(texte , nb_caracteres):
2 """
3 Coupe la chaîne de caractères jusqu'au nombre de caractères

souhaité,
4 sans couper la nouvelle chaîne au milieu d'un mot.
5 Si la chaîne est plus petite , elle est renvoyée sans points

de suspension.
6 ---
7 Exemple d'utilisation :
8 {{ "Bonjour tout le monde , c'est Diego "| smart_truncate:18

}} renvoie
9 "Bonjour tout le..."

10 """
11
12 # Nous vérifions tout d'abord que l'argument passé est bien

un nombre
13 try:
14 nb_caracteres = int(nb_caracteres)
15 except ValueError:
16 return texte # Retour de la chaîne originale sinon
17
18 # Si la chaîne est plus petite que le nombre de caractères

maximum voulus ,
19 # nous renvoyons directement la chaîne telle quelle.
20 if len(texte) <= nb_caracteres:
21 return texte
22
23 # Sinon , nous coupons au maximum , tout en gardant le caract

ère suivant
24 # pour savoir si nous avons coupé à la fin d'un mot ou en

plein milieu
25 texte = texte [: nb_caracteres + 1]
26
27 # Nous vérifions d'abord que le dernier caractère n'est pas

une espace ,
28 # autrement , il est inutile d'enlever le dernier mot !
29 if texte[-1:] != ' ':

161

CHAPITRE 14. SIMPLIFIONS NOS TEMPLATES : FILTRES, TAGS ET
CONTEXTES

30 mots = texte.split(' ')[:-1]
31 texte = ' '.join(mots)
32 else:
33 texte = texte[0:-1]
34
35 return texte + '...'

Il ne reste plus qu’à enregistrer notre filtre (via le décorateur @register.filter au-
dessus de la ligne def smart_truncate(texte, nb_caracteres): par exemple) et
vous pouvez dès à présent tester ce tout nouveau filtre :

1 <p>
2 {{ "Bonjour"|smart_truncate:14 }}

3 {{ "Bonjour tout le monde"|smart_truncate:15 }}

4 {{ "Bonjour tout le monde , c'est bientôt Noël"|

smart_truncate:18 }}

5 {{ "To be or not to be , that's the question"|smart_truncate:

16 }}

6 </p>

Ce qui affiche le paragraphe suivant :

Bonjour Bonjour tout le. . . Bonjour tout le. . . To be or not to. . .

Pour finir, il est possible de mixer les cas filtre sans argument et filtre avec un argument.
Dans notre cas de troncature, nous pouvons par exemple vouloir par défaut tronquer
à partir du 20e caractère, si aucun argument n’est passé. Dans ce cas, la méthode est
classique : nous pouvons indiquer qu’un argument est facultatif et lui donner une valeur
par défaut. Il suffit de changer la déclaration de la fonction par :

1 def smart_truncate(texte , nb_caracteres=20):

Désormais, la syntaxe suivante est acceptée :

1 {{ "To be or not to be , that's the question"|smart_truncate }}<
br />

et renvoie « To be or not to be,. . . ».

Les contextes de templates

Avant d’attaquer les tags, nous allons aborder un autre point essentiel qui est la création
de template context processor (ou en français, des processeurs de contextes de
templates). Le but des template context processor est de préremplir le contexte de
la requête et ainsi de disposer de données dans tous les templates de notre projet. Le
contexte est l’ensemble des variables disponibles dans votre template. Prenons l’exemple
suivant :

1 return render(request , 'blog/archives.html', {'news': news , '
date': date_actuelle })

162

LES CONTEXTES DE TEMPLATES

Ici, nous indiquons au template les variables news et date_actuelle qui seront incor-
porées au contexte, avec les noms news et date. Cependant, par défaut notre contexte
ne contiendra pas que ces variables, il est même possible d’en ajouter davantage, si le
besoin se fait sentir.

Pour mieux comprendre l’utilité des contextes, démarrons par un petit exemple.

Un exemple maladroit : afficher la date sur toutes nos pages

Il arrive que vous ayez besoin d’accéder à certaines variables depuis tous vos templates,
et que ceux-ci soient enregistrés dans votre base de données, un fichier, un cache, etc.
Imaginons que vous souhaitiez afficher dans tous vos templates la date du jour. Une
première idée serait de récupérer la date sur chacune des vues :

1 from django.shortcuts import render
2 from datetime import datetime
3
4 def accueil(request):
5 date_actuelle = datetime.now()
6 # [...] Récupération d'autres données (exemple : une liste

de news)
7 return render(request , 'accueil.html', locals ())
8
9 def contact(request):

10 date_actuelle = datetime.now()
11 return render(request , 'contact.html', locals ())

Une fois cela fait, il suffit après d’intégrer la date via {{ date_actuelle }} dans un
template parent, à partir duquel tous les autres templates seront étendus. Néanmoins,
cette méthode est lourde et répétitive, c’est ici que les processeurs de contextes entrent
en jeu.

Sachez que l’exemple pris ici n’est pas réellement pertinent puisque Django
permet déjà par défaut d’afficher la date avec le tag {% now %}. Néanmoins
il s’agit d’un exemple simple et concret qui s’adapte bien à l’explication.

Factorisons encore et toujours

Pour résoudre ce problème, nous allons créer une fonction qui sera appelée à chaque
page, et qui se chargera d’incorporer la date dans les données disponibles de façon
automatique.

Tout d’abord, créez un fichier Python, que nous appellerons context_processors.py,
par convention, dans une de vos applications. Vu que cela concerne tout le projet, il
est même conseillé de le créer dans le sous-dossier ayant le même nom que votre projet
(crepes_bretonnes dans le cas de ce cours).

163

CHAPITRE 14. SIMPLIFIONS NOS TEMPLATES : FILTRES, TAGS ET
CONTEXTES

Dans ce fichier, nous allons coder une ou plusieurs fonctions, qui renverront des dic-
tionnaires de données que le framework intégrera à tous nos templates. Tout d’abord,
écrivons notre fonction qui va récupérer la date actuelle. La fonction ne prend qu’un
paramètre, qui est notre déjà très connu objet request. En retour, la fonction renvoie
un dictionnaire, contenant les valeurs à intégrer dans les templates, assez similaire au
dictionnaire passé à la fonction render pour construire un template. Par exemple :

1 from datetime import datetime
2
3 def get_infos(request):
4 date_actuelle = datetime.now()
5 return {'date_actuelle ': date_actuelle}

Sachez que Django exécute d’abord la vue et seulement après le contexte. Faites donc
attention à prendre des noms de variables suffisamment explicites et qui ont peu de
chances de se retrouver dans vos vues, et donc d’entrer en collision. Si jamais vous
appelez une variable date_actuelle, elle sera tout simplement écrasée par la fonction
ci-dessus.

Il faut maintenant indiquer au framework d’exécuter cette fonction à chaque page. Pour
cela, nous allons encore une fois nous plonger dans le fichier settings.py et y définir
une nouvelle variable. À chaque page, Django exécute et récupère les dictionnaires
de plusieurs fonctions, listées dans la variable TEMPLATE_CONTEXT_PROCESSORS. Par
défaut, elle est égale au tuple suivant, qui n’est pas présent dans le fichier settings.py :

1 TEMPLATE_CONTEXT_PROCESSORS = ("django.contrib.auth.
context_processors.auth",

2 "django.core.context_processors.debug",
3 "django.core.context_processors.i18n",
4 "django.core.context_processors.media",
5 "django.core.context_processors.static",
6 "django.core.context_processors.tz",
7 "django.contrib.messages.context_processors.messages",
8)

Nous voyons que Django utilise lui-même quelques fonctions, afin de nous fournir
quelques variables par défaut. Pour éviter de casser ce processus, il faut recopier cette
liste et juste ajouter à la fin nos fonctions :

1 TEMPLATE_CONTEXT_PROCESSORS = ("django.contrib.auth.
context_processors.auth",

2 "django.core.context_processors.debug",
3 "django.core.context_processors.i18n",
4 "django.core.context_processors.media",
5 "django.core.context_processors.static",
6 "django.core.context_processors.tz",
7 "django.contrib.messages.context_processors.messages",
8
9 "crepes_bretonnes.context_processors.get_infos",

10)

164

DES STRUCTURES PLUS COMPLEXES : LES CUSTOM TAGS

Nous pouvons désormais utiliser notre variable date_actuelle dans tous nos templates
et afficher fièrement la date sur notre blog :

1 <p>Bonjour à tous , nous sommes le {{ date_actuelle }} et il
fait beau en Bretagne !</p>

Et peu importe le template où vous intégrez cette ligne, vous aurez forcément le résultat
suivant (si vous n’avez pas de variable date_actuelle dans votre vue correspondante,
bien sûr) :

1 Bonjour à tous , nous sommes le 15 novembre 2012 23:58:16 et il
fait beau en Bretagne !

Petit point technique sur l’initialisation du contexte

Attention : dans ce cours nous avons toujours utilisé render comme retour de nos
vues (hormis quelques cas précis où nous avons utilisé HttpResponse). Comme nous
l’avions précisé dans le premier chapitre sur les templates, la fonction render est un
« raccourci », effectuant plusieurs actions en interne, nous évitant la réécriture de plu-
sieurs lignes de code. Cette méthode prend notamment en charge le fait de charger le
contexte !

Cependant, toutes les fonctions de django.shortcut ne le font pas, comme par exemple
render_to_response, dont nous n’avons pas parlé et qui fonctionne de la façon sui-
vante pour le cas des archives de notre blog :

1 from django.shortcuts import render_to_response
2 [...]
3 return render_to_response('blog/archives.html', locals ())

Si vous rechargez la page, vous remarquerez que la date actuelle a disparu, et que ceci
apparaît : « Bonjour à tous, nous sommes le et il fait beau en Bretagne ! ». En effet,
par défaut render_to_response ne prend pas en compte les fonctions contenues dans
TEMPLATE_CONTEXT_PROCESSOR. . . Pour régler ce problème, il faut à chaque fois ajouter
un argument :

1 return render_to_response('blog/archives.html', locals (),
context_instance=RequestContext(request))

. . . ce qui est plus lourd à écrire ! Cependant, certains utilisateurs avancés peuvent
préférer cette méthode afin de gérer de façon précise le contexte à utiliser.

Faites donc attention à vos contextes si jamais vous vous écartez de la fonction render.

Des structures plus complexes : les custom tags

Nous avons vu précédemment que les filtres nous permettent de faire de légères opéra-
tions sur nos variables, afin de factoriser un traitement qui pourra être souvent répété

165

CHAPITRE 14. SIMPLIFIONS NOS TEMPLATES : FILTRES, TAGS ET
CONTEXTES

dans notre template (par exemple la mise en forme d’une citation). Nous allons main-
tenant aborder les tags, qui sont légèrement plus complexes à mettre en œuvre, mais
bien plus puissants.

Alors que les filtres peuvent être comparés à des fonctions, les tags doivent être dé-
composés en deux parties : la structuration du tag et son rendu. Pour définir de façon
précise un tag, nous devons préciser comment l’écrire et ce qu’il renvoie.

Pour mieux comprendre, regardons comment marche un template avec Django.

À la compilation du template, Django découpe votre fichier template en plusieurs nœuds
de plusieurs types. Prenons le cas du template suivant :
1 Bonjour , nous sommes le {% now %}. Je suis {{ prenom }} {{ nom|

upper }}

Ici, les nœuds détectés lors de la lecture du template seront :

– TextNode : "Bonjour, nous sommes le " ;
– Now node (sans argument) ;
– TextNode : ". Je suis " ;
– VariableNode : prenom ;
– TextNode : " " ;
– VariableNode : nom et un FilterExpression upper.

Lors de l’exécution de la fonction render à la fin d’une vue, Django se charge d’appeler
la méthode render de chaque nœud et concatène le tout. Le schéma de la figure 14.3
récapitule tout cela.

Figure 14.3 – Schéma d’exécution

Lorsque nous créons un nouveau tag, la fonction appelée à la compilation doit renvoyer
un objet dont la classe hérite de Node, avec sa propre méthode render. C’est à partir
de ce principe que nous obtenons les deux étapes de description d’un tag, à savoir :

– Décrire comment il peut être écrit pour être reconnu (fonction de compilation) ;

166

DES STRUCTURES PLUS COMPLEXES : LES CUSTOM TAGS

– Décrire ce qu’il rend, via une classe contenant au moins une fonction render (fonction
de rendu).

Première étape : la fonction de compilation

À chaque fois que le parseur de template rencontre un tag, il appelle la méthode cor-
respondant au nom du tag enregistré comme pour nos filtres. La fonction se charge ici
de vérifier si les paramètres fournis sont corrects ou de renvoyer une erreur si jamais le
tag est mal utilisé. Nous allons nous baser sur un exemple assez simple pour commen-
cer : afficher un nombre aléatoire compris entre deux arguments. Cette opération est
notamment impossible avec un filtre, ou du moins pas proprement.

Notre tag pourra être utilisé de la façon suivante : {% random 0 42 %} et renverra
donc un nombre entier compris entre 0 et 42. Il faudra faire attention à ce que les
paramètres soient bien des entiers, et que le premier soit inférieur au second.

Contrairement au filtre, Django requiert que notre méthode prenne deux arguments pré-
cis : parser, qui est l’objet en charge de parser le template actuel (que nous n’utiliserons
pas ici), et token, qui contient les informations sur le tag actuel, comme les paramètres
passés. token contient de plus quelques méthodes sympathiques qui vont nous simpli-
fier le traitement des paramètres. Par exemple, la méthode split_contents() permet
de séparer les arguments dans une liste. Il est extrêmement déconseillé d’utiliser la mé-
thode classique token.contents.split(’ ’), qui pourrait « casser » vos arguments
si jamais il y a des chaînes de caractères avec des espaces. Voici un bref exemple de
fonction de compilation :

1 def random(parser , token):
2 """ Tag générant un nombre aléatoire , entre les bornes donn

ées en arguments """
3 #Séparation des paramètres contenus dans l'objet token
4 #Le premier élément du token est toujours le nom du tag en

cours
5 try:
6 nom_tag , begin , end = token.split_contents ()
7 except ValueError:
8 msg = u'Le tag %s doit prendre exactement deux

arguments.' % token.split_contents ()[0]
9 raise template.TemplateSyntaxError(msg)

10
11 #Nous vérifions ensuite que nos deux paramètres sont bien

des entiers
12 try:
13 begin , end = int(begin), int(end)
14 except ValueError:
15 msg = u'Les arguments du tag %s sont obligatoirement

des entiers.' % nom_tag
16 raise template.TemplateSyntaxError(msg)
17
18 #Nous vérifions si le premier est inférieur au second

167

CHAPITRE 14. SIMPLIFIONS NOS TEMPLATES : FILTRES, TAGS ET
CONTEXTES

19 if begin > end:
20 msg = u'L\'argument "begin" doit obligatoirement ê

tre inférieur à l\'argument "end" dans le tag %s.
' % nom_tag

21 raise template.TemplateSyntaxError(msg)
22
23 return RandomNode(begin , end)

Jusqu’ici, il n’y a qu’une suite de conditions afin de vérifier que les arguments sont bien
ceux attendus. Si jamais un tag est mal formé (nombre d’arguments incorrect, types des
arguments invalides, etc.), alors le template ne se construira pas et une erreur HTTP
500 sera renvoyée au client, avec comme message d’erreur ce qui est précisé dans la
variable msg, si jamais vous êtes en mode « debug » (voir la figure 14.4).

Figure 14.4 – Diagramme UML de notre classe RandomNode

Il ne nous reste plus qu’à écrire la classe RandomNode, qui est renvoyée par la méthode
ci-dessus. Vu son appel, il semble évident que sa méthode __init__ prend trois argu-
ments : self, begin et end. Comme nous l’avons vu tout à l’heure, cette classe doit
également définir une méthode render(self, context), qui va renvoyer une chaîne de
caractères, qui remplacera notre tag dans notre rendu HTML. Cette méthode prend en
paramètre le contexte du template, auquel nous pouvons accéder et que nous pouvons
éditer.

1 from random import randint
2
3 class RandomNode(template.Node):
4 def __init__(self , begin , end):
5 self.begin = begin
6 self.end = end
7
8 def render(self , context):
9 return str(randint(self.begin , self.end))

Comme pour la fonction de structuration, le code en lui-même n’est pas complexe. Nous
nous contentons ici de nous souvenir des arguments, et une fois que la fonction render
est appelée, nous générons un nombre aléatoire. Il ne faut cependant pas oublier de le
transposer en chaîne de caractères, puisque Django fait après une simple concaténation

168

DES STRUCTURES PLUS COMPLEXES : LES CUSTOM TAGS

des nœuds !

Il ne nous reste plus qu’à enregistrer notre tag désormais ! Comme pour les filtres, il
existe plusieurs méthodes :

– @register.tag() au début de notre fonction de compilation ;
– @register.tag(name=’nom_du_tag’) si jamais nous prenons un nom différent ;
– register.tag(’nom_du_tag’, random) pour l’enregistrer après la déclaration de
la fonction.

Ici, nous allons garder la première méthode, comme pour les filtres. Au final, notre tag
complet ressemble à ceci :

1 #-*- coding:utf -8 -*-
2 from django import template
3 from random import randint
4
5 register = template.Library ()
6
7 @register.tag
8 def random(parser , token):
9 """ Tag générant un nombre aléatoire , entre les bornes donn

ées en arguments """
10 #Séparation des paramètres contenus dans l'objet token
11 try:
12 nom_tag , begin , end = token.split_contents ()
13 except ValueError:
14 msg = u'Le tag %s doit prendre exactement deux

arguments.' % token.split_contents ()[0]
15 raise template.TemplateSyntaxError(msg)
16
17 #Nous vérifions que nos deux paramètres sont bien des

entiers
18 try:
19 begin , end = int(begin), int(end)
20 except ValueError:
21 msg = u'Les arguments du tag %s sont obligatoirement

des entiers.' % nom_tag
22 raise template.TemplateSyntaxError(msg)
23
24 #Nous vérifions si le premier est bien inférieur au second
25 if begin > end:
26 msg = u'L\'argument "begin" doit obligatoirement ê

tre inférieur à l\'argument "end" dans le tag %s.
' % nom_tag

27 raise template.TemplateSyntaxError(msg)
28
29 return RandomNode(begin , end)
30
31 class RandomNode(template.Node):
32 def __init__(self , begin , end):
33 self.begin = begin

169

CHAPITRE 14. SIMPLIFIONS NOS TEMPLATES : FILTRES, TAGS ET
CONTEXTES

34 self.end = end
35
36 def render(self , context):
37 return str(randint(self.begin , self.end))

Si vous oubliez d’enregistrer votre tag et que vous tentez tout de même
de l’utiliser, vous obtiendrez l’erreur suivante : Invalid block tag: ’ran‌
dom’.

Nous allons enfin pouvoir en profiter dans notre template ! En incorporant {% random
1 20 %}, vous allez afficher un nombre compris entre 1 et 20 à chaque appel de la page.
Vous pouvez d’ailleurs tester les cas incorrects cités dans la méthode de compilation.
Par exemple, {% random "a" 10 %} affiche la page d’erreur 500 visible à la figure 14.5.

Figure 14.5 – Erreur 500 lorsque le tag est mal utilisé

Passage de variable dans notre tag

Avec le tag que nous venons d’écrire, il n’est possible que de passer des entiers en
paramètres. Il est cependant parfois pratique de pouvoir donner des variables en argu-
ments, comme nous avons pu le faire avec {% url %} dans le premier TP. Pour ce faire,
il va falloir revoir un peu l’architecture de notre tag. Une variable est par définition
indéterminée, il y a donc plusieurs tests que nous ne pourrons faire qu’au rendu, et non
plus à la compilation du tag. Nous allons continuer sur notre tag {% random %}, en lui
passant en paramètres deux variables, qui seront définies dans notre vue comme ceci :

1 def ma_vue(request):
2 begin = 1
3 end = 42
4 return render(request , 'template.html', locals ())

170

DES STRUCTURES PLUS COMPLEXES : LES CUSTOM TAGS

1 {% random begin end %}

Nous allons devoir changer notre tag pour interpréter les variables et faire attention
au cas où une des variables entrées n’existe pas dans notre contexte (qui est l’ensemble
des variables passées au template depuis la vue). . . Le problème, comme nous l’avons
dit plus haut, c’est que ce genre d’informations n’est disponible qu’au rendu. Il va donc
falloir décaler la plupart de nos tests au rendu. Cela pouvait paraître logique de tester
nos entrées dès leur réception, mais cela devient tout simplement impossible.

Tout d’abord, supprimons les tests sur le type et la comparaison entre begin et end
de la méthode de compilation, ce qui nous laisse uniquement :

1 @register.tag
2 def random(parser , token):
3 """ Tag générant un nombre aléatoire , entre les bornes donn

ées en arguments """
4 #Séparation des paramètres contenus dans l'objet token
5 try:
6 nom_tag , begin , end = token.split_contents ()
7 except ValueError:
8 msg = u'Le tag random doit prendre exactement deux

arguments.'
9 raise template.TemplateSyntaxError(msg)

10
11 return RandomNode(begin , end)

Désormais, notre méthode render dans la classe RandomNode sera un peu plus com-
plexe. Nous allons devoir vérifier dedans si la variable passée en paramètre existe et si
oui, vérifier s’il s’agit bien d’un entier. Pour ce faire, il existe dans le module template
une classe Variable qui permet de récupérer le contenu d’une variable à partir de son
nom dans le contexte. Si jamais nous lui donnons une constante, nous obtiendrons cette
même constante en retour, ce qui nous permet de rester compatibles avec notre ancien
tag !

1 from django.template.base import VariableDoesNotExist
2
3 class RandomNode(template.Node):
4 def __init__(self , begin , end):
5 self.begin = begin
6 self.end = end
7
8 def render(self , context):
9 not_exist = False

10
11 try:
12 begin = template.Variable(self.begin).resolve(

context)
13 self.begin = int(begin)
14 except (VariableDoesNotExist , ValueError):
15 not_exist = self.begin
16 try:

171

CHAPITRE 14. SIMPLIFIONS NOS TEMPLATES : FILTRES, TAGS ET
CONTEXTES

17 end = template.Variable(self.end).resolve(context
)

18 self.end = int(end)
19 except (VariableDoesNotExist , ValueError):
20 not_exist = self.end
21
22 if not_exist:
23 msg = u'L\'argument "%s" n\'existe pas , ou n\'est

pas un entier.' % not_exist
24 raise template.TemplateSyntaxError(msg)
25
26 #Nous vérifions si le premier entier est bien infé

rieur au second
27 if self.begin > self.end:
28 msg = u'L\'argument "begin" doit obligatoirement

être inférieur à l\'argument "end" dans le tag
random.'

29 raise template.TemplateSyntaxError(msg)
30
31 return str(randint(self.begin , self.end))

Quelques explications s’imposent.

– Notre méthode __init__ n’a pas changé, elle ne fait que garder les paramètres passés
dans des attributs de l’objet.

– Au début de render(), nous vérifions les arguments passés. Via la classe template,
nous récupérons le contenu de la variable ou les constantes 1 et 10 si jamais nous
avons {% random 1 10 %}. Nous renvoyons une exception de base de Django, Varia‌
bleDoesNotExist, si la variable n’existe pas.

– En cas d’erreur, nous renvoyons les mêmes messages d’erreur qu’avant, comme si
nous étions à la compilation.

– Enfin nous vérifions toujours à la fin que la première borne est bien inférieure à la
seconde, et nous retournons notre nombre aléatoire.

Vous pouvez désormais tester votre tag dans n’importe quel sens :

1 {% random 0 42 %}
2 {% random a b %} avec a = 0 et b = 42
3 {% random a 42 %}

Mais aussi avec des cas qui ne marchent pas :

1 {% random a 42 %} avec a = "Bonjour"
2 {% random a 42 %} où a n'existe pas

Les simple tags

Il ne nous reste plus qu’à voir comment coder des tags simples, qui prennent des
arguments et dont la sortie ne dépend que de ces arguments. C’est le cas de notre

172

DES STRUCTURES PLUS COMPLEXES : LES CUSTOM TAGS

tag random par exemple, qui renvoie un nombre en ne se basant que sur nos deux
paramètres. Il est alors possible de simplifier tout notre tag par :

1 @register.simple_tag(name='random ') #L'argument name est
toujours facultatif

2 def random(begin , end):
3 try:
4 return randint(int(begin), int(end))
5 except ValueError:
6 raise template.TemplateSyntaxError(u'Les arguments

doivent nécessairement être des entiers ')

Il est aussi possible d’accéder au contexte depuis ce genre de tags, en le précisant à son
enregistrement :

1 @register.simple_tag(takes_context=True)
2 def random(context , begin , end):
3 # ...

Pourquoi avoir fait toute cette partie si au final nous pouvons faire un tag en
moins de lignes, et plus simplement ?

D’une part, il n’est pas possible de tout faire avec des simple tags. Dès que vous avez
besoin d’avoir un état interne par exemple (comme pour cycle), il est plus facile
de passer via une classe (notre nœud) qui stockera cet état. De plus, les simple tags
fonctionnent en réalité de la même façon que nos tags précédents : un objet SimpleNode
est instancié et sa fonction render ne fait qu’appeler notre fonction random.

Finalement, sachez que nous n’avons pas présenté ici tous les types de tags possibles,
cela serait beaucoup trop lourd et indigeste. Voici des cas spécifiques :

– Les tags composés, par exemple {% if %} {% endif %} ;
– Les tags incluant d’autres templates, et possédant leur propre contexte ;
– Et enfin, les tags agissant sur le contexte plutôt que de renvoyer une valeur.

Ces types de tags assez spécifiques sont en revanche décrits dans la documentation
officielle, n’hésitez pas à y jeter un coup d’œil si vous en avez besoin.

Quelques points à ne pas négliger

Pour finir, il est important de savoir que les tags renvoient toujours du texte considéré
comme sécurisé, c’est-à-dire que le HTML y est interprété. Il est donc important de
penser à échapper le HTML quand il est nécessaire, via la fonction escape, telle que
nous l’avons vue avec les filtres.

De plus, les développeurs de Django recommandent de rester vigilants lorsque nous
souhaitons garder un état interne avec les tags. En effet, certains environnements fonc-
tionnent de façon multithreadée, et donc un même nœud pourrait être exécuté à deux
endroits différents, dans deux contextes différents, dans un ordre indéterminé. Ainsi

173

CHAPITRE 14. SIMPLIFIONS NOS TEMPLATES : FILTRES, TAGS ET
CONTEXTES

son état interne est partagé entre les deux contextes et le résultat peut être inattendu.
Dans ce cas, il est conseillé de garder un état interne dans le contexte, via le para-
mètre disponible dans la fonction render, afin de savoir où en était l’exécution pour
ce lieu, et non pour l’ensemble du template. Ce point est assez complexe, pour plus
d’informations à ce sujet, consultez la la documentation officielle.

En résumé

– Django permet aux développeurs d’étendre les possibilités des templates en créant
des filtres et des tags.

– Les filtres et tags créés sont organisés par modules. Pour utiliser un filtre ou un tag
il faut charger son module via {% load nom_module %}.

– Les filtres sont de simples fonctions, prenant en entrée 1 ou 2 arguments et renvoyant
toujours une chaîne de caractères.

– Le contexte des templates est l’ensemble des variables disponibles et utilisables
dans un template. Ce contexte est rempli par toutes les fonctions citées dans TEM‌
PLATE_CONTEXT_PROCESSORS, puis par la vue appelée et enfin par les éventuels tags
du template.

– Les tags permettent des traitements plus complexes sur les données à afficher. Les
tags peuvent avoir une « mémoire », plusieurs arguments, former des blocs. . .

174

Chapitre 15
Les signaux et middlewares

Difficulté :

D jango délimite proprement et nettement ses différentes composantes. Il est impossible
de se charger du routage des URL depuis un template, et il est impossible de créer
des modèles dans les vues. Si cette structuration a bien évidemment des avantages

(propreté du code, réutilisation, etc.), sa lourdeur peut parfois empêcher de réaliser certaines
actions.

En effet, comment effectuer une action précise à chaque fois qu’une entrée d’un modèle
est supprimée, et ce depuis n’importe où dans le code ? Ou comment analyser toutes
les requêtes d’un visiteur pour s’assurer que son adresse IP n’est pas bannie ? Pour ces
situations un peu spéciales qui nécessitent de répéter la même action à plusieurs moments
et endroits dans le code, Django intègre deux mécanismes différents qui permettent de
résoudre ce genre de problèmes : les signaux et les middlewares.

175

CHAPITRE 15. LES SIGNAUX ET MIDDLEWARES

Notifiez avec les signaux

Premier mécanisme : les signaux. Un signal est une notification envoyée par une appli-
cation à Django lorsqu’une action se déroule, et renvoyée par le framework à toutes les
autres parties d’applications qui se sont enregistrées pour savoir quand ce type d’action
se déroule, et comment.

Reprenons l’exemple de la suppression d’un modèle : imaginons que nous ayons plu-
sieurs fichiers sur le disque dur liés à une instance d’un modèle. Lorsque l’instance est
supprimée, nous souhaitons que les fichiers associés soient également supprimés. Ce-
pendant, cette entrée peut être supprimée depuis n’importe où dans le code, et vous
ne pouvez pas à chaque fois rajouter un appel vers une fonction qui se charge de la
suppression des fichiers associés (parce que ce serait trop lourd ou que cela ne dépend
simplement pas de vous). Les signaux sont la solution parfaite à ce problème.

Pour résoudre ce problème, une fois que vous avez écrit la fonction de suppression des
fichiers associés, vous n’avez qu’à indiquer à Django d’appeler cette fonction à chaque
fois qu’une entrée de modèle est supprimée. En pratique, cela se fait ainsi :

1 from django.models.signals import post_delete
2
3 post_delete.connect(ma_fonction_de_suppression , sender=

MonModele)

La méthode est plutôt simple : il suffit d’importer le signal et d’utiliser la méthode
connect pour connecter une fonction à ce signal. Le signal ici importé est post_delete,
et comme son nom l’indique il est notifié à chaque fois qu’une instance a été supprimée.
Chaque fois que Django recevra le signal, il le transmettra en appelant la fonction
passée en argument (ma_fonction_de_suppression ici). Cette méthode peut prendre
plusieurs paramètres, comme par exemple ici sender, qui permet de restreindre l’envoi
de signaux à un seul modèle (MonModele donc), sans quoi la fonction sera appelée pour
toute entrée supprimée, et quel que soit le modèle dont elle dépend.

Une fonction appelée par un signal prend souvent plusieurs arguments. Généralement,
elle prend presque toujours un argument appelé sender. Son contenu dépend du type
de signal en lui-même (par exemple, pour post_delete, la variable sender passée en
argument sera toujours le modèle concerné, comme vu précédemment). Chaque type
de signal possède ses propres arguments. post_delete en prend trois :

– sender : le modèle concerné, comme vu précédemment ;
– instance : l’instance du modèle supprimée (celle-ci étant supprimée, il est très dé-
conseillé de modifier ses données ou de tenter de la sauvegarder) ;

– using : l’alias de la base de données utilisée (si vous utilisez plusieurs bases de
données, il s’agit d’un point particulier et inutile la plupart du temps).

Notre fonction ma_fonction_de_suppression pourrait donc s’écrire de la sorte :

1 def ma_fonction_de_suppression(sender , instance , ** kwargs):
2 #processus de suppression selon les données fournies

par instance

176

NOTIFIEZ AVEC LES SIGNAUX

Pourquoi spécifier un **kwargs ?

Vous ne pouvez jamais être certains qu’un signal renverra bien tous les arguments
possibles, cela dépend du contexte. Dès lors, il est toujours important de spécifier un
dictionnaire pour récupérer les valeurs supplémentaires, et si vous avez éventuellement
besoin d’une de ces valeurs, il suffit de vérifier si la clé est bien présente dans le dic-
tionnaire.

Où faut-il mettre l’enregistrement des signaux ?

Nous pouvons mettre l’enregistrement n’importe où, tant que Django charge le fichier
afin qu’il puisse faire la connexion directement. Le framework charge déjà par défaut
certains fichiers comme les models.py, urls.py, etc. Le meilleur endroit serait donc un
de ces fichiers. Généralement, nous choisissons un models.py (étant donné que certains
signaux agissent à partir d’actions sur des modèles, c’est plutôt un bon choix !).

Petit détail, il est également possible d’enregistrer une fonction à un signal directement
lors de sa déclaration avec un décorateur. En reprenant l’exemple ci-dessus :

1 from django.models.signals import post_delete
2 from django.dispatch import receiver
3
4 @receiver(post_delete , sender=MonModele)
5 def ma_fonction_de_suppression(sender , instance , ** kwargs):
6 #processus de suppression selon les données fournies

par instance

Il existe bien entendu d’autres types de signaux, voici une liste non exhaustive en
contenant les principaux, avec les arguments transmis avec la notification :

– django.db.models.signals.pre_save : envoyé avant qu’une instance de modèle ne
soit enregistrée. Voici ses arguments :
– sender : le modèle concerné
– instance : l’instance du modèle concernée
– using : l’alias de la BDD utilisée
– raw : un booléen, mis à True si l’instance sera enregistrée telle qu’elle est présentée

depuis l’argument
– django.db.models.signals.post_save : envoyé après qu’une instance de modèle

a été enregistrée. Voici ses arguments :
– sender : le modèle concerné
– instance : l’instance du modèle concernée
– using : l’alias de la BDD utilisée
– raw : un booléen, mis à True si l’instance sera enregistrée telle qu’elle est présentée

depuis l’argument
– created : un booléen, mis à True si l’instance a été correctement enregistrée

177

CHAPITRE 15. LES SIGNAUX ET MIDDLEWARES

– django.db.models.signals.pre_delete : envoyé avant qu’une instance de modèle
ne soit supprimée. Voici ses arguments :
– sender : le modèle concerné
– instance : l’instance du modèle concernée
– using : l’alias de la BDD utilisée

– django.db.models.signals.post_delete : envoyé après qu’une instance de modèle
a été supprimée. Voici ses arguments :
– sender : le modèle concerné
– instance : l’instance du modèle concernée
– using : l’alias de la BDD utilisée

– django.core.signals.request_started : envoyé à chaque fois que Django reçoit
une nouvelle requête HTTP. Voici son argument :
– sender : la classe qui a envoyé la requête, par exemple django.core.handlers.ws
gi.WsgiHandler

– django.core.signals.request_finished : envoyé à chaque fois que Django ter-
mine de répondre à une requête HTTP. Voici son argument :
– sender : la classe qui a envoyé la requête, par exemple django.core.handlers.ws
gi.WsgiHandler

Il existe d’autres signaux inclus par défaut, expliqués dans la documentation officielle.

Sachez que vous pouvez tester tous ces signaux simplement en créant une fonction
affichant une ligne dans la console (avec print) et en liant cette fonction aux signaux
désirés.

Heureusement, si vous vous sentez limités par la (maigre) liste de types de signaux
fournis par Django, sachez que vous pouvez en créer vous-mêmes. Le processus est
plutôt simple.

Chaque signal est en fait une instance de django.dispatch.Signal. Pour créer un nou-
veau signal, il suffit donc de créer une nouvelle instance, et de lui dire quels arguments
le signal peut transmettre :

1 import django.dispatch
2
3 crepe_finie = django.dispatch.Signal(providing_args =["adresse",

"prix"])

Ici, nous créons un nouveau signal nommé crepe_finie. Nous lui indiquons une liste
contenant les noms d’éventuels arguments (les arguments de signaux n’étant jamais
fixes, vous pouvez la modifier à tout moment) qu’il peut transmettre, et c’est tout !

Nous pourrions dès lors enregistrer une fonction sur ce signal, comme vu précédem-
ment :

1 crepe_finie.connect(faire_livraison)

Lorsque nous souhaitons lancer une notification à toutes les fonctions enregistrées au
signal, il suffit simplement d’utiliser la méthode send, et ceci depuis n’importe où. Nous
l’avons fait depuis un modèle :

1 class Crepe(models.Model):

178

CONTRÔLEZ TOUT AVEC LES MIDDLEWARES

2 nom_recette = models.CharField(max_length=255)
3 prix = models.IntegerField ()
4 #d'autres attributs
5
6 def preparer(self , adresse):
7 # Nous préparons la crêpe pour l'expédier à l'

adresse transmise
8 crepe_finie.send(sender=self , adresse=adresse ,

prix=self.prix)

À chaque fois que la méthode preparer d’une crêpe sera appelée, la fonction faire_liv
raison le sera également avec les arguments adéquats. Notons ici qu’il est toujours obli-
gatoire de préciser un argument sender lorsque nous utilisons la méthode send. Libre à
vous de choisir ce que vous souhaitez transmettre, mais il est censé représenter l’entité
qui est à l’origine du signal. Nous avons ici choisi d’envoyer directement l’instance du
modèle.

Aussi, la fonction send retourne une liste de paires de variables, chaque paire étant un
tuple de type (receveur, retour), où le receveur est la fonction appelée, et le retour
est la variable retournée par la fonction. Par exemple, si nous n’avons que la fonction
faire_livraison connectée au signal crepe_finie, et que celle-ci retourne True si la
livraison s’est bien déroulée (considérons que c’est le cas maintenant), la liste renvoyée
par send serait [(faire_livraison, True)].

Pour terminer, il est également possible de déconnecter une fonction d’un signal. Pour
ce faire, il faut utiliser la méthode disconnect du signal, cette dernière s’utilise comme
connect :

1 crepe_finie.disconnect(faire_livraison)

crepe_finie n’appellera plus faire_livraison si une notification est envoyée. Sachez
que, si vous avez soumis un argument sender lors de la connexion, vous devez également
le préciser lors de la déconnexion.

Contrôlez tout avec les middlewares

Deuxième mécanisme : les middlewares. Nous avons vu précédemment que lorsque
Django recevait une requête HTTP, il analysait l’URL demandée et en fonction de
celle-ci choisissait la vue adaptée, et cette dernière se chargeait de renvoyer une réponse
au client (en utilisant éventuellement un template). Nous avons cependant omis une
étape, qui se se situe juste avant l’appel de la vue.

En effet, le framework va à ce moment exécuter certains bouts de code appelés des
middlewares. Il s’agit en quelque sorte de fonctions qui seront exécutées à chaque re-
quête. Il est possible d’appeler ces fonctions à différents moments du processus que
nous verrons plus tard.

Typiquement, les middlewares se chargent de modifier certaines variables ou d’inter-
rompre le processus de traitement de la requête, et cela aux différents moments que

179

CHAPITRE 15. LES SIGNAUX ET MIDDLEWARES

nous avons listés ci-dessus.

Par défaut, Django inclut plusieurs middlewares intégrés au framework :

1 MIDDLEWARE_CLASSES = (
2 'django.middleware.common.CommonMiddleware ',
3 'django.contrib.sessions.middleware.SessionMiddleware ',
4 'django.middleware.csrf.CsrfViewMiddleware ',
5 'django.contrib.auth.middleware.AuthenticationMiddleware ',
6 'django.contrib.messages.middleware.MessageMiddleware ',
7)

Cette variable est en fait une variable reprise automatiquement dans la configuration
si elle n’est pas déjà présente. Vous pouvez la réécrire en la définissant dans votre
settings.py. Il est tout de même conseillé de garder les middlewares par défaut. Ils
s’occupent de certaines tâches pratiques et permettent d’utiliser d’autres fonctionnalités
du framework que nous verrons plus tard ou avons déjà vues (comme la sécurisation
des formules contre les attaques CSRF, le système utilisateur, l’envoi de notifications
aux visiteurs, etc.).

La création d’un middleware est très simple et permet de réaliser des choses très puis-
santes. Un middleware est en réalité une simple classe qui peut posséder certaines mé-
thodes. Chaque méthode sera appelée à un certain moment du processus de traitement
de la requête. Voici les différentes méthodes implémentables, avec leurs arguments :

– process_request(self, request) : à l’arrivée d’une requête HTTP, avant de la
router vers une vue précise. request est un objet HttpRequest (le même que celui
passé à une vue).

– process_view(self, request, view_func, view_args, view_kwargs) : juste
avant d’appeler la vue. view_func est une référence vers la fonction prête à être
appelée par le framework. view_args et view_kwargs sont les arguments prêts à
être appelés avec la vue.

– process_template_response(self, request, response) : lorsque le code retourne
un objet TemplateResponse d’une vue. response est un objet HttpResponse (celui
retourné par la vue appelée).

– process_response(self, request, response) : juste avant que Django renvoie
la réponse.

– process_exception(self, request, exception) : juste avant que Django renvoie
une exception si une erreur s’est produite. exception est un objet de type Exception.

Toutes ces fonctions peuvent ne rien retourner (None), ou retourner un HttpResponse.
En cas de retour vide, Django va continuer le processus normalement (appeler les autres
middlewares, lancer la vue, renvoyer la réponse, etc.).

En revanche, si une valeur est renvoyée, cela doit être impérativement un objet Htt‌
pResponse. Le processus de traitement de la requête sera arrêté net (plus rien ne sera
appelé, même pas un middleware), et l’objet HttpResponse retourné sera directement
envoyé au client.

Cela vaut pour toutes les méthodes susnommées, à l’exception de process_response
qui doit obligatoirement renvoyer un objet HttpResponse ! Vous pouvez toujours ren-

180

CONTRÔLEZ TOUT AVEC LES MIDDLEWARES

voyer celui passé en argument si la réponse n’a pas besoin d’être modifiée.

Sachez également que vous pouvez altérer par exemple une requête, juste en modifiant
des attributs de request dans process_request. L’instance modifiée de HttpRequest
sera alors envoyée à la vue.

Dernier point avant de passer à la pratique : les middlewares sont appelés dans l’ordre
précisé dans le setting.py, de haut en bas, pour toutes les méthodes appelées avant
l’appel de la vue (soit process_request et process_view). Après, les middlewares
sont appelés dans le sens inverse, de bas en haut. Au final, les middlewares forment
en quelque sorte des « couches » autour de la vue, comme un oignon, ainsi que vous
pouvez le constater sur la figure 15.1.

Figure 15.1 – Ordre d’exécution des middlewares

Passons à la création de notre propre middleware. Comme exemple, nous avons choisi
de coder un petit middleware simple mais pratique qui comptabilise le nombre de fois
qu’une page est vue et affiche ce nombre à la fin de chaque page. Bien évidemment, vu
le principe des middlewares, il n’est nullement nécessaire d’aller modifier une vue pour
arriver à nos fins, et cela marche pour toutes nos vues !

Pour ce faire, et pour des raisons de propreté et de structuration du code, le middleware
sera placé dans une nouvelle application nommée « stats ». Pour rappel, pour créer une
application, rien de plus simple :

python manage.py startapp stats

Une fois cela fait, la prochaine étape consiste à créer un nouveau modèle dans l’appli-
cation qui permet de tenir compte du nombre de visites d’une page. Chaque entrée du
modèle correspondra à une page. Rien de spécial en définitive :

1 from django.db import models
2
3 class Page(models.Model):

181

CHAPITRE 15. LES SIGNAUX ET MIDDLEWARES

4 url = models.URLField ()
5 nb_visites = models.IntegerField(default=1)
6
7 def __unicode__(self):
8 return self.url

Il suffit dès lors d’ajouter l’application au settings.py et de lancer un manage.py
syncdb. Voici notre middleware, que nous avons enregistré dans stats/middleware.py :

1 #-*- coding: utf -8 -*-
2 from models import Page #Nous importons le modèle défini précé

demment
3
4 class StatsMiddleware(object):
5 def process_view(self , request , view_func , view_args ,

view_kwargs): # À chaque appel de vue
6 try:
7 p = Page.objects.get(url=request.path) # Le

compteur lié à la page est récupéré
8 p.nb_visites += 1
9 p.save()

10 except Page.DoesNotExist: # Si la page n'a pas encore
été consultée

11 Page(url=request.path).save() # Un nouveau
compteur à 1 par défaut est créé

12
13 def process_response(self , request , response): # À chaque

réponse
14 if response.status_code == 200:
15 p = Page.objects.get(url=request.path)
16 response.content += u"Cette page a été vue {0} fois

.".format(p.nb_visites)
17 return response

N’oubliez pas de mettre à jour MIDDLEWARE_CLASSES dans votre settings.py. Chez
nous, il ressemble finalement à ceci :

1 MIDDLEWARE_CLASSES = (
2 'django.middleware.common.CommonMiddleware ',
3 'django.contrib.sessions.middleware.SessionMiddleware ',
4 'django.middleware.csrf.CsrfViewMiddleware ',
5 'django.contrib.auth.middleware.AuthenticationMiddleware ',
6 'django.contrib.messages.middleware.MessageMiddleware ',
7 'stats.middleware.StatsMiddleware ',
8)

Le fonctionnement est plutôt simple. Avant chaque appel de vue, Django appelle la
méthode process_view qui se chargera de déterminer si l’URL de la page a déjà été
appelée ou non (l’URL est accessible à partir de l’attribut request.path, n’hésitez
pas à consulter la documentation pour connaître toutes les méthodes et attributs de

182

CONTRÔLEZ TOUT AVEC LES MIDDLEWARES

HttpRequest). Si la page a déjà été appelée, il incrémente le compteur de l’entrée.
Sinon, il crée une nouvelle entrée.

Au retour, on vérifie tout d’abord si la requête s’est bien déroulée en s’assurant que le
code HTTP de la réponse est bien 200 (ce code signifie que tout s’est bien déroulé) ;
ensuite nous reprenons le compteur et nous modifions le contenu de la réponse (inclus
dans response.content, la documentation vous donnera également tout ce qu’il faut
savoir sur l’objet HttpResponse). Bien évidemment, si vous renvoyez du HTML au
client, la phrase ajoutée ne sera pas intégrée correctement au document, néanmoins
vous pouvez très bien coder quelque chose de plus sophistiqué qui permette d’insérer
la phrase à un endroit valide.

Au final, sur toutes vos pages, vous verrez la phrase avec le nombre de visites qui se
rajoute tout seule, sans devoir modifier toutes les vues une à une !

En résumé

– Un signal est une notification envoyée par une application à Django lorsqu’une action
se déroule, et renvoyée par le framework à toutes les autres parties d’applications qui
se sont enregistrées pour savoir quand ce type d’action se déroule, et comment.

– Les signaux permettent d’effectuer des actions à chaque fois qu’un événement précis
survient.

– Les middlewares sont des classes instanciées à chaque requête, exception, ou encore
génération de template, dans l’ordre donné par MIDDLEWARE_CLASSES.

– Ils permettent d’effectuer une tâche précise à chaque appel.

183

CHAPITRE 15. LES SIGNAUX ET MIDDLEWARES

184

Quatrième partie

Des outils supplémentaires

185

Chapitre 16
Les utilisateurs

Difficulté :

S ’il y a bien une application très puissante et couramment utilisée que Django propose,
c’est la gestion des utilisateurs. Le framework propose en effet une solution complète
pour gérer le cas classique d’un accès membres, très flexible et indéniablement pratique.

Nous expliquerons l’essentiel de cette application dans ce chapitre.

187

CHAPITRE 16. LES UTILISATEURS

Commençons par la base

Avant tout, il est nécessaire de s’assurer que vous avez bien ajouté l’application qui
gère les utilisateurs, et ses dépendances. Elles sont ajoutées par défaut, néanmoins,
vérifiez toujours que ’django.contrib.auth’ et ’django.contrib.contenttypes’
sont bien présents dans la variable INSTALLED_APPS de votre settings.py. Cela fait,
nous pouvons commencer !

L’utilisateur

Tout le système utilisateur tourne autour du modèle django.contrib.auth.models.Us
er. Celui-ci contient toutes les informations concernant vos utilisateurs, et quelques
méthodes supplémentaires bien pratiques pour pouvoir les administrer. Voici les prin-
cipaux attributs de User :

– username : nom d’utilisateur, 30 caractères maximum (lettres, chiffres et les carac-
tères spéciaux _, @, +, . et -) ;

– first_name : prénom, optionnel, 30 caractères maximum ;
– last_name : nom de famille, optionnel, 30 caractères maximum ;
– email : adresse e-mail ;
– password : un hash du mot de passe. Django n’enregistre pas les mots de passe en
clair dans la base de données, nous y reviendrons plus tard ;

– is_staff : booléen, permet d’indiquer si l’utilisateur a accès à l’administration de
Django ;

– is_active : booléen, par défaut mis à True. Si mis à False, l’utilisateur est considéré
comme désactivé et ne peut plus se connecter. Au lieu de supprimer un utilisateur,
il est conseillé de le désactiver afin de ne pas devoir supprimer d’éventuels modèles
liés à l’utilisateur (avec une ForeignKey par exemple) ;

– is_superuser : booléen, si mis à True, l’utilisateur obtient toutes les permissions
(nous y reviendrons plus tard également) ;

– last_login : datetime représente la date/l’heure à laquelle l’utilisateur s’est connecté
la dernière fois ;

– date_joined : datetime représente la date/l’heure à laquelle l’utilisateur s’est ins-
crit ;

– user_permissions : une relation ManyToMany vers les permissions (introduites par
la suite) ;

– groups : une relation ManyToMany vers les groupes (introduits par la suite).

Vous ne vous servirez pas nécessairement de tous ces attributs, mais ils peuvent se
révéler pratiques si l’occasion de les utiliser se présente. La première question qui devrait
vous venir à l’esprit est la suivante : « Est-il possible d’ajouter des attributs ? La liste
est plutôt limitée. » N’ayez crainte, nous aborderons cela bientôt.

La façon la plus simple de créer un utilisateur est d’utiliser la fonction create_user
fournie avec le modèle. Elle prend trois arguments : le nom de l’utilisateur, son adresse
e-mail et son mot de passe (les trois attributs obligatoires du modèle), et enregistre
directement l’utilisateur dans la base de données :

188

COMMENÇONS PAR LA BASE

1 >>> from django.contrib.auth.models import User
2 >>> user = User.objects.create_user('Maxime ', 'maxime@crepes -

bretonnes.com', 'm0nsup3rm0td3p4ss3 ')
3 >>> user.id
4 2

Nous avons donc ici un nouvel utilisateur nommé « Maxime », avec l’adresse e-mail
maxime@crepes-bretonnes.com et comme mot de passe « m0nsup3rm0td3p4ss3 ».
Son ID dans la base de données (preuve que l’entrée a bien été sauvegardée) est 2. Bien
entendu, nous pouvons désormais modifier les autres champs :

1 >>> user.first_name , user.last_name = "Maxime","Lorant"
2 >>> user.is_staff = True
3 >>> user.save()

Et les modifications sont enregistrées. Tous les champs sont éditables classiquement,
sauf un : password, qui possède ses propres fonctions.

Les mots de passe

En effet, les mots de passe sont quelque peu spéciaux. Il ne faut jamais enregistrer les
mots de passe tels quels (en clair) dans la base de données. Si un jour une personne
non autorisée accède à votre base de données, elle aura accès à tous les mots de passe
de vos utilisateurs, ce qui serait plutôt embêtant du point de vue de la sécurité.

Pour éviter cela, il faut donner le mot de passe à une fonction de hachage qui va le
transformer en une autre chaîne de caractères, ce que nous appelons une « empreinte »
ou un hash. Cette fonction est à sens unique : le même mot de passe donnera toujours la
même empreinte, en revanche, nous ne pouvons pas obtenir le mot de passe uniquement
à partir de l’empreinte. En utilisant cette méthode, même si quelqu’un accède aux mots
de passe enregistrés dans la base de données, il ne pourra rien en faire. Chaque fois
qu’un utilisateur voudra se connecter, il suffira d’appliquer la même fonction de hachage
au mot de passe fourni lors de la connexion, et de vérifier si celui-ci correspond bien à
celui enregistré dans la base de données.

Quelle est la bonne nouvelle dans tout ça ? Django le fait automatiquement ! En effet,
tout à l’heure nous avons renseigné le mot de passe « m0nsup3rm0td3p4ss3 » pour
notre utilisateur. Regardons ce qui a réellement été enregistré :

1 >>> user.password
2 'pbkdf2_sha256$10000$cRu9mKvGzMzW$Du[...]57LjuceDyapH/qjvQ='

Le résultat est plutôt inattendu. Tous les mots de passe sont enregistrés selon cette
disposition : algorithmeselempreinte.

– Algorithme : le nom de l’algorithme de la fonction de hachage utilisée pour le mot
de passe (ici pbkdf2_sha256, la fonction de hachage par défaut de Django 1.5) ;

– Sel : le sel est une chaîne de caractères insérée dans le mot de passe originel pour
rendre son déchiffrage plus difficile (ici 10000). Django s’en charge tout seul, inutile
de s’y attarder ;

189

CHAPITRE 16. LES UTILISATEURS

– Empreinte : l’empreinte finale, résultat de la combinaison du mot de passe ori-
ginel et du sel par la fonction de hachage. Elle représente la majeure partie de
user.password.

Maintenant que vous savez que le champ password ne doit pas s’utiliser comme un
champ classique, comment l’utiliser ? Django fournit quatre méthodes au modèle User
pour la gestion des mots de passe :

– set_password(mot_de_passe) : permet de modifier le mot de passe de l’utilisateur
par celui donné en argument. Django va hacher ce dernier, puis l’enregistrer dans
la base de données, comme vu précédemment. Cette méthode ne sauvegarde pas
l’entrée dans la base de données, il faut faire un .save() par la suite.

– check_password(mot_de_passe) : vérifie si le mot de passe donné en argument
correspond bien à l’empreinte enregistrée dans la base de données. Retourne True si
les deux mots de passe correspondent, sinon False.

– set_unusable_password() : permet d’indiquer que l’utilisateur n’a pas de mot de
passe défini. Dans ce cas, check_password retournera toujours False.

– has_usable_password() : retourne True si le compte utilisateur a un mot de passe
valide, False si set_unusable_password a été utilisé.

Petit exemple pratique désormais, en reprenant notre utilisateur de tout à l’heure :

1 >>> user = User.objects.get(username="Maxime")
2 >>> user.set_password("coucou") # Nous changeons le mot de

passe
3 >>> user.check_password("salut") # Nous essayons un mot de

passe invalide
4 False
5 >>> user.check_password("coucou") # Avec le bon mot de passe ,

ça marche !
6 True
7 >>> user.set_unusable_password () # Nous désactivons le mot de

passe
8 >>> user.check_password("coucou") # Comme prévu , le mot de

passe précédent n'est plus bon
9 False

Étendre le modèle User

Pour terminer ce sous-chapitre, abordons l’extension du modèle User. Nous avons vu
plus tôt que les champs de User étaient assez limités, ce qui pourrait se révéler embêtant
si nous souhaitons par exemple adjoindre un avatar à chaque utilisateur.

Une solution répandue pour étendre le modèle User est d’utiliser un autre modèle
reprenant tous les champs que vous souhaitez ajouter à votre modèle utilisateur. Une
fois ce modèle spécifié, il faudra le lier au modèle User en ajoutant un OneToOneField
vers ce dernier.

Imaginons que nous souhaitions donner la possibilité à un utilisateur d’avoir un avatar,
une signature pour ses messages, un lien vers son site web et de pouvoir s’inscrire à la

190

PASSONS AUX VUES

newsletter de notre site. Notre modèle ressemblerait à ceci, dans blog/models.py :

1 from django.contrib.auth.models import User
2
3 class Profil(models.Model):
4 user = models.OneToOneField(User) # La liaison OneToOne

vers le modèle User
5 site_web = models.URLField(null=True , blank=True)
6 avatar = models.ImageField(null=True , blank=True , upload_to

="avatars/")
7 signature = models.TextField(null=True , blank=True)
8 inscrit_newsletter = models.BooleanField(default=False)
9

10 def __unicode__(self):
11 return u"Profil de {0}".format(self.user.username)

Les différents attributs que nous avons listés sont bel et bien repris dans notre modèle
Profil, dont notamment la liaison vers le modèle User.

N’oubliez pas que vous pouvez accéder à l’instance Profil associée à une instance
User depuis cette dernière en utilisant la relation inverse créée automatiquement par
le OneToOneField. Pour illustrer le fonctionnement de cette relation inverse, voici un
petit exemple :

1 >>> from django.contrib.auth.models import User
2 >>> from blog.models import Profil
3 >>> user = User.objects.create_user('Mathieu ', 'mathieu@crepes -

bretonnes.com', '_2b!84%sdb') # Nous créons un nouvel
utilisateur

4 >>> profil = Profil(user=user , site_web="http ://www.crepes -
bretonnes.com",signature="Coucou ! C'est moi !")

5 #Le profil qui va avec
6 >>> profil.save() # Nous l'enregistrons
7 >>> profil
8 <Profil: Profil de Mathieu >
9 >>> user.profil

10 <Profil: Profil de Mathieu >
11 >>> user.profil.signature
12 u"Coucou ! C'est moi !"

Voilà ! Le modèle User est désormais correctement étendu avec les nouveaux attributs
et méthodes de Profil.

Passons aux vues

Maintenant que nous avons assimilé les bases, il est temps de passer aux vues per-
mettant à un utilisateur de se connecter, déconnecter, etc. Nous n’aborderons pas ici
l’enregistrement de nouveaux utilisateurs. En effet, nous avons déjà montré la fonction

191

CHAPITRE 16. LES UTILISATEURS

à utiliser, et le reste est tout à fait classique : un formulaire, une vue pour récupérer
et enregistrer les informations, un template. . .

La connexion

Nous avons désormais des utilisateurs, ils n’ont plus qu’à se connecter ! Pour ce faire,
nous aurons besoin des éléments suivants :

– Un formulaire pour récupérer le nom d’utilisateur et le mot de passe ;
– Un template pour afficher ce formulaire ;
– Une vue pour récupérer les données, les vérifier, et connecter l’utilisateur.

Commençons par le formulaire. Il ne nous faut que deux choses : le nom d’utilisateur
et le mot de passe. Autrement dit, le formulaire est très simple. Nous le plaçons dans
blog/forms.py :

1 class ConnexionForm(forms.Form):
2 username = forms.CharField(label="Nom d'utilisateur",

max_length=30)
3 password = forms.CharField(label="Mot de passe", widget=

forms.PasswordInput)

Rien de compliqué, si ce n’est le widget utilisé : forms.PasswordInput permet d’avoir
une boîte de saisie dont les caractères seront masqués, afin d’éviter que le mot de passe
ne soit affiché en clair lors de sa saisie.

Passons au template :

1 <h1>Se connecter </h1>
2
3 {% if error %}
4 <p>Utilisateur inexistant ou mauvais de mot de passe.</

strong ></p>
5 {% endif %}
6
7 {% if user.is_authenticated %}
8 Vous êtes connecté, {{ user.username }} !
9 {% else %}

10 <form method="post" action=".">
11 {% csrf_token %}
12 {{ form.as_p }}
13 <input type="submit"/>
14 </form >
15 {% endif %}

La nouveauté ici est la variable user, qui contient l’instance User de l’utilisateur s’il
est connecté, ou une instance de la classe AnonymousUser. La classe AnonymousUser
est utilisée pour indiquer que le visiteur n’est pas un utilisateur connecté. User et
AnonymousUser partagent certaines méthodes comme is_authenticated, qui permet
de définir si le visiteur est connecté ou non. Une instance User retournera toujours

192

PASSONS AUX VUES

True, tandis qu’une instance AnonymousUser retournera toujours False. La variable
user dans les templates est ajoutée par un processeur de contexte inclus par défaut.

Notez l’affichage du message d’erreur si la combinaison utilisateur/mot de passe est
incorrecte.

Pour terminer, passons à la partie intéressante : la vue. Récapitulons auparavant tout
ce qu’elle doit faire :

1. Afficher le formulaire ;
2. Après la saisie par l’utilisateur, récupérer les données ;
3. Vérifier si les données entrées correspondent bien à un utilisateur ;
4. Si c’est le cas, le connecter et le rediriger vers une autre page ;
5. Sinon, afficher un message d’erreur.

Vous savez d’ores et déjà comment réaliser les étapes 1, 2 et 5. Reste à savoir comment
vérifier si les données sont correctes, et si c’est le cas connecter l’utilisateur. Pour cela,
Django fournit deux fonctions, authenticate et login, toutes deux situées dans le
module django.contrib.auth. Voici comment elles fonctionnent :

– authenticate(username=nom, password=mdp) : si la combinaison utilisateur/mot
de passe est correcte, authenticate renvoie l’entrée du modèle User correspondante.
Si ce n’est pas le cas, la fonction renvoie None.

– login(request, user) : permet de connecter l’utilisateur. La fonction prend l’objet
HttpRequest passé à la vue par le framework, et l’instance de User de l’utilisateur
à connecter.

Attention ! Avant d’utiliser login avec un utilisateur, vous devez avant tout
avoir utilisé authenticate avec le nom d’utilisateur et le mot de passe cor-
respondant, sans quoi login n’acceptera pas la connexion. Il s’agit d’une
mesure de sécurité.

Désormais, nous avons tout ce qu’il nous faut pour coder notre vue. Voici notre
exemple :

1 from django.contrib.auth import authenticate , login
2
3 def connexion(request):
4 error = False
5
6 if request.method == "POST":
7 form = ConnexionForm(request.POST)
8 if form.is_valid ():
9 username = form.cleaned_data["username"] # Nous ré

cupérons le nom d'utilisateur
10 password = form.cleaned_data["password"] # ... et

le mot de passe
11 user = authenticate(username=username , password=

password) #Nous vérifions si les données sont
correctes

193

CHAPITRE 16. LES UTILISATEURS

12 if user: # Si l'objet renvoyé n'est pas None
13 login(request , user) # nous connectons l'

utilisateur
14 else: #sinon une erreur sera affichée
15 error = True
16 else:
17 form = ConnexionForm ()
18
19 return render(request , 'connexion.html',locals ())

Et finalement la directive de routage dans crepes_bretonnes/urls.py :

1 url(r'^connexion/$', 'blog.views.connexion ', name='connexion '),

Vous pouvez désormais essayer de vous connecter depuis l’adresse /connexion/. Vous
devrez soit créer un compte manuellement dans la console si cela n’a pas été fait
auparavant grâce à la commande manage.py createsuperuser, soit renseigner le nom
d’utilisateur et le mot de passe du compte super-utilisateur que vous avez créé lors de
votre tout premier syncdb.

Si vous entrez une mauvaise combinaison, un message d’erreur sera affiché, sinon, vous
serez connectés !

La déconnexion

Heureusement, la déconnexion est beaucoup plus simple que la connexion. En effet,
il suffit d’appeler la fonction logout de django.contrib.auth. Il n’y a même pas
besoin de vérifier si le visiteur est connecté ou non (mais libre à vous de le faire si vous
souhaitez ajouter un message d’erreur si ce n’est pas le cas par exemple).

1 from django.contrib.auth import logout
2 from django.shortcuts import render
3 from django.core.urlresolvers import reverse
4
5 def deconnexion(request):
6 logout(request)
7 return redirect(reverse(connexion))

Avec comme routage :

1 url(r'^deconnexion/$', 'blog.views.deconnexion ', name='
deconnexion '),

C’est aussi simple que cela !

En général

Comme nos utilisateurs peuvent désormais se connecter et se déconnecter, il ne reste
plus qu’à pouvoir interagir avec eux. Nous avons vu précédemment qu’un processeur de

194

PASSONS AUX VUES

contexte se chargeait d’ajouter une variable reprenant l’instance User de l’utilisateur
dans les templates. Il en va de même pour les vues.

En effet, l’objet HttpRequest passé à la vue contient également un attribut user qui
renvoie l’objet utilisateur du visiteur. Celui-ci peut, encore une fois, être une instance
User s’il est connecté, ou AnonymousUser si ce n’est pas le cas. Exemple dans une vue :

1 from django.http import HttpResponse
2
3 def dire_bonjour(request):
4 if request.user.is_authenticated ():
5 return HttpResponse("Salut , {0} !".format(request.user.

username))
6 return HttpResponse("Salut , anonyme.")

Maintenant, imaginons que nous souhaitions autoriser l’accès de certaines vues unique-
ment aux utilisateurs connectés. Nous pourrions vérifier si l’utilisateur est connecté, et
si ce n’est pas le cas le rediriger vers une autre page, mais cela serait lourd et redondant.
Pour éviter de se répéter, Django fournit un petit décorateur très pratique qui nous
permet de nous assurer qu’uniquement des visiteurs authentifiés accèdent à la vue. Son
nom est login_required et il se situe dans django.contrib.auth.decorators. En
voici un exemple d’utilisation :

1 from django.contrib.auth.decorators import login_required
2
3 @login_required
4 def ma_vue(request):
5 ...

Si l’utilisateur n’est pas connecté, il sera redirigé vers l’URL de la vue de connexion.
Cette URL est normalement définie depuis la variable LOGIN_URL dans votre set‌
tings.py. Si ce n’est pas fait, la valeur par défaut est ’/accounts/login/’. Comme
nous avons utilisé l’URL ’/connexion/’ tout à l’heure, réindiquons-la ici :

1 LOGIN_URL = '/connexion/'

Il faut savoir que si l’utilisateur n’est pas connecté, non seulement il sera redirigé vers ’/‌
connexion/’, mais l’URL complète de la redirection sera "/connexion/?next=/bonjo
ur/". En effet, Django ajoute un paramètre GET appelé next qui contient l’URL d’où
provient la redirection. Si vous le souhaitez, vous pouvez récupérer ce paramètre dans
la vue gérant la connexion, et ensuite rediriger l’utilisateur vers l’URL fournie. Néan-
moins, ce n’est pas obligatoire.

Sachez que vous pouvez également préciser le nom de ce paramètre (au lieu de next
par défaut), via l’argument redirect_field_name du décorateur :

1 from django.contrib.auth.decorators import login_required
2
3 @login_required(redirect_field_name='rediriger_vers ')
4 def ma_vue(request):
5 ...

195

CHAPITRE 16. LES UTILISATEURS

Vous pouvez également spécifier une autre URL de redirection pour la connexion (au
lieu de prendre LOGIN_URL dans le settings.py) :

1 from django.contrib.auth.decorators import login_required
2
3 @login_required(login_url='/utilisateurs/connexion/')
4 def my_view(request):
5 ...

Les vues génériques

L’application django.contrib.auth contient certaines vues génériques très puissantes
et pratiques qui permettent de réaliser les tâches communes d’un système utilisateurs
sans devoir écrire une seule vue : se connecter, se déconnecter, changer le mot de passe
et récupérer un mot de passe perdu.

Pourquoi alors nous avoir expliqué comment gérer manuellement la
(dé)connexion ?

Les vues génériques répondent à un besoin basique. Si vous avez besoin d’implémen-
ter des spécificités lors de la connexion, il est important de savoir comment procéder
manuellement.

Vous avez vu comment utiliser les vues génériques dans le chapitre dédié ; nous ne
ferons donc ici que les lister, avec leurs paramètres et modes de fonctionnement.

Se connecter

Vue : django.contrib.auth.views.login. Arguments optionnels :

– template_name : le nom du template à utiliser (par défaut registration/login.html).

Contexte du template :

– form : le formulaire à afficher ;
– next : l’URL vers laquelle l’utilisateur sera redirigé après la connexion.

Affiche le formulaire et se charge de vérifier si les données saisies correspondent à
un utilisateur. Si c’est le cas, la vue redirige l’utilisateur vers l’URL indiquée dans
settings.LOGIN_REDIRECT_URL ou vers l’URL passée par le paramètre GET next s’il
y en a un, sinon il affiche le formulaire. Le template doit pouvoir afficher le formulaire
et un bouton pour l’envoyer.

196

LES VUES GÉNÉRIQUES

Se déconnecter

Vue : django.contrib.auth.views.logout. Arguments optionnels (un seul à utili-
ser) :

– next_page : l’URL vers laquelle le visiteur sera redirigé après la déconnexion ;
– template_name : le template à afficher en cas de déconnexion (par défaut registra‌
tion/logged_out.html) ;

– redirect_field_name : utilise pour la redirection l’URL du paramètre GET passé
en argument.

Contexte du template :

– title : chaîne de caractères contenant « Déconnecté ».

Déconnecte l’utilisateur et le redirige.

Se déconnecter puis se connecter

Vue : django.contrib.auth.views.logout_then_login. Arguments optionnels :

– login_url : l’URL de la page de connexion à utiliser (par défaut utilise settings.LO
GIN_URL).

Contexte du template : aucun.

Déconnecte l’utilisateur puis le redirige vers l’URL contenant la page de connexion.

Changer le mot de passe

Vue : django.contrib.auth.views.password_change. Arguments optionnels :

– template_name : le nom du template à utiliser (par défaut registration/pass‌
word_change_form.html) ;

– post_change_redirect : l’URL vers laquelle rediriger l’utilisateur après le change-
ment du mot de passe ;

– password_change_form : pour spécifier un autre formulaire que celui utilisé par
défaut.

Contexte du template :

– form : le formulaire à afficher

Affiche un formulaire pour modifier le mot de passe de l’utilisateur, puis le redirige si
le changement s’est correctement déroulé. Le template doit contenir ce formulaire et
un bouton pour l’envoyer.

Confirmation du changement de mot de passe

Vue : django.contrib.auth.views.password_change_done. Arguments optionnels :

197

CHAPITRE 16. LES UTILISATEURS

– template_name : le nom du template à utiliser (par défaut registration/pass‌
word_change_done.html).

Contexte du template : aucun.

Vous pouvez vous servir de cette vue pour afficher un message de confirmation après le
changement de mot de passe. Il suffit de faire pointer la redirection de django.contrib.
auth.views.password_change sur cette vue.

Demande de réinitialisation du mot de passe

Vue : django.contrib.auth.views.password_reset. Arguments optionnels :

– template_name : le nom du template à utiliser (par défaut registration/pass‌
word_reset_form.html) ;

– email_template_name : le nom du template à utiliser pour générer l’e-mail qui
sera envoyé à l’utilisateur avec le lien pour réinitialiser le mot de passe (par défaut
registration/password_reset_email.html) ;

– subject_template_name : le nom du template à utiliser pour générer le sujet de l’e-
mail envoyé à l’utilisateur (par défaut registration/password_reset_subject.txt) ;

– password_reset_form : pour spécifier un autre formulaire à utiliser que celui par
défaut ;

– post_reset_direct : l’URL vers laquelle rediriger le visiteur après la demande de
réinitialisation ;

– from_email : une adresse e-mail valide depuis laquelle sera envoyé l’e-mail (par
défaut, Django utilise settings.DEFAULT_FROM_EMAIL).

Contexte du template :

– form : le formulaire à afficher.

Contexte de l’e-mail et du sujet :

– user : l’utilisateur concerné par la réinitialisation du mot de passe ;
– email : un alias pour user.email ;
– domain : le domaine du site web à utiliser pour construire l’URL (utilise request.get
_host() pour obtenir la variable) ;

– protocol : http ou https ;
– uid : l’ID de l’utilisateur encodé en base 36 ;
– token : le token unique de la demande de réinitialisation du mot de passe.

La vue affiche un formulaire permettant d’indiquer l’adresse e-mail du compte à ré-
cupérer. L’utilisateur recevra alors un e-mail (il est important de configurer l’envoi
d’e-mails, référez-vous à l’annexe sur le déploiement en production pour davantage
d’informations à ce sujet) avec un lien vers la vue de confirmation de réinitialisation
du mot de passe.

Voici un exemple du template pour générer l’e-mail :

1 Une demande de réinitialisation a été envoyée pour le compte {{
user.username }}. Veuillez suivre le lien ci -dessous :

198

LES VUES GÉNÉRIQUES

2 {{ protocol }}://{{ domain }}{% url 'password_reset_confirm '
uidb36=uid token=token %}

Confirmation de demande de réinitialisation du mot de passe

Vue : django.contrib.auth.views.password_reset_done. Arguments optionnels :

– template_name : le nom du template à utiliser (par défaut registration/pass‌
word_reset_done.html).

Contexte du template : vide.

Vous pouvez vous servir de cette vue pour afficher un message de confirmation après
la demande de réinitalisation du mot de passe. Il suffit de faire pointer la redirection
de django.contrib.auth.views.password_reset sur cette vue.

Réinitialiser le mot de passe

Vue : django.contrib.auth.views.password_reset_confirm. Arguments optionnels :

– template_name : le nom du template à utiliser (par défaut registration/pass‌
word_reset_confirm.html) ;

– set_password_form : pour spécifier un autre formulaire à utiliser que celui par
défaut ;

– post_reset_redirect : l’URL vers laquelle sera redirigé l’utilisateur après la réini-
tialisation.

Contexte du template :

– form : le formulaire à afficher ;
– validlink : booléen, mis à True si l’URL actuelle représente bien une demande de

réinitialisation valide.

Cette vue affichera le formulaire pour introduire un nouveau mot de passe, et se char-
gera de la mise à jour de ce dernier.

Confirmation de la réinitialisation du mot de passe

Vue : django.contrib.auth.views.password_reset_complete. Arguments option-
nels :

– template_name : le nom du template à utiliser (par défaut registration/pass‌
word_reset_complete.html).

Contexte du template : aucun.

Vous pouvez vous servir de cette vue pour afficher un message de confirmation après la
réinitialisation du mot de passe. Il suffit de faire pointer la redirection de django.contri
b.auth.views.password_reset_confirm sur cette vue.

199

CHAPITRE 16. LES UTILISATEURS

Les permissions et les groupes

Le système utilisateurs de Django fournit un système de permissions simple. Ces per-
missions permettent de déterminer si un utilisateur a le droit d’effectuer une certaine
action ou non.

Les permissions

Une permission a la forme suivante : nom_application.nom_permission. Django crée
automatiquement trois permissions pour chaque modèle enregistré. Ces permissions
sont notamment utilisées dans l’administration. Si nous reprenons par exemple le mo-
dèle Article de l’application blog, trois permissions sont créées par Django :

– blog.add_article : la permission pour créer un article ;
– blog.change_article : la permission pour modifier un article ;
– blog.delete_article : la permission pour supprimer un article.

Il est bien entendu possible de créer des permissions nous-mêmes. Chaque permission
dépend d’un modèle et doit être renseignée dans sa sous-classe Meta. Petit exemple en
reprenant notre modèle Article utilisé au début :

1 class Article(models.Model):
2 titre = models.CharField(max_length=100)
3 auteur = models.CharField(max_length=42)
4 contenu = models.TextField ()
5 date = models.DateTimeField(auto_now_add=True , auto_now=

False , verbose_name="Date de parution")
6 categorie = models.ForeignKey(Categorie)
7
8 def __unicode__(self):
9 return self.titre

10
11 class Meta:
12 permissions = (
13 ("commenter_article","Commenter un article"),
14 ("marquer_article","Marquer un article comme lu

"),
15)

Pour ajouter de nouvelles permissions, il y a juste besoin de créer un tuple contenant les
paires de vos permissions, avec à chaque fois le nom de la permission et sa description.
Il est ensuite possible d’assigner des permissions à un utilisateur dans l’administration
(cela se fait depuis la fiche d’un utilisateur).

Par la suite, pour vérifier si un utilisateur possède ou non une permission, il suffit
de faire : user.has_perm("blog.commenter_article"). La fonction renvoie True ou
False, selon si l’utilisateur dispose de la permission ou non. Cette fonction est égale-
ment accessible depuis les templates, encore grâce à un context processor :

1 {% if perms.blog.commenter_article %}

200

LES PERMISSIONS ET LES GROUPES

2 <p>Commenter </p>
3 {% endif %}

Le lien ici ne sera affiché que si l’utilisateur dispose de la permission pour commenter.

De même que pour le décorateur login_required, il existe un décorateur permettant
de s’assurer que l’utilisateur qui souhaite accéder à la vue dispose bien de la permission
nécessaire. Il s’agit de django.contrib.auth.decorators.permission_required.

1 from django.contrib.auth.decorators import permission_required
2
3 @permission_required('blog.commenter_article ')
4 def article_commenter(request , article):
5 ...

Sachez qu’il est également possible de créer une permission dynamiquement. Pour cela,
il faut importer le modèle Permission, situé dans django.contrib.auth.models. Ce
modèle possède les attributs suivants :

– name : le nom de la permission, 50 caractères maximum.
– content_type : un content_type pour désigner le modèle concerné.
– codename : le nom de code de la permission.

Donc, si nous souhaitons par exemple créer une permission « commenter un article »
spécifique à chaque article, et ce à chaque fois que nous créons un nouvel article, voici
comment procéder :

1 from django.contrib.auth.models import Permission
2 from blog.models import Article
3 from django.contrib.contenttypes.models import ContentType
4
5 ... # Récupération des données
6 article.save()
7
8 content_type = ContentType.objects.get(app_label='blog', model=

'Article ')
9 permission = Permission.objects.create(

10 codename='commenter_article_{0}'.format(article.id),
11 name='Commenter l'article "{0}"'.format(article.titre),
12 content_type=content_type)

Une fois que la permission est créée, il est possible de l’assigner à un utilisateur précis
de cette façon :

1 user.user_permissions.add(permission)

Pour rappel, user_permissions est une relation ManyToMany de l’utilisateur vers la
table des permissions.

201

CHAPITRE 16. LES UTILISATEURS

Les groupes

Imaginons que vous souhaitiez attribuer certaines permissions à tout un ensemble d’uti-
lisateurs, mais sans devoir les assigner une à une à chaque utilisateur (ce serait beaucoup
trop long et répétitif !). Devant cette situation épineuse, Django propose une solution
très simple : les groupes.

Un groupe est simplement un regroupement d’utilisateurs auquel nous pouvons assigner
des permissions. Une fois qu’un groupe dispose d’une permission, tous ses utilisateurs en
disposent automatiquement aussi. Il s’agit donc d’un modèle, django.contrib.auth.m
odels.Group, qui dispose des champs suivants :

– name : le nom du groupe (80 caractères maximum) ;
– permissions : une relation ManyToMany vers les permissions, comme user_permissi
ons pour les utilisateurs.

Pour ajouter un utilisateur à un groupe, il faut utiliser la relation ManyToMany groups
de User :

1 >>> from django.contrib.auth.models import User , Group
2 >>> group = Group(name=u"Les gens géniaux")
3 >>> group.save()
4 >>> user = User.objects.get(username="Mathieu")
5 >>> user.groups.add(group)

Une fois cela fait, l’utilisateur « Mathieu » dispose de toutes les permissions attribuées
au groupe « Les gens géniaux ».

Voilà ! Vous avez désormais vu de long en large le système utilisateurs que propose
Django. Vous avez pu remarquer qu’il est tout aussi puissant que flexible. Inutile donc
de réécrire tout un système utilisateurs lorsque le framework en propose déjà un plus
que correct.

En résumé

– Django propose une base de modèles qui permettent de décrire les utilisateurs et
groupes d’utilisateurs au sein du projet. Ces modèles possèdent l’ensemble des fonc-
tions nécessaires pour une gestion détaillée des objets : make_password, check_passw
ord. . .

– Il est possible d’étendre le modèle d’utilisateur de base, pour ajouter ses propres
champs.

– Le framework dispose également de vues génériques pour la création d’utilisateurs,
la connexion, l’inscription, la déconnexion, le changement de mot de passe. . . En cas
de besoin plus spécifique, il peut être nécessaire de les réécrire soi-même.

– Il est possible de restreindre l’accès à une vue aux personnes connectées via @lo‌
gin_required ou à un groupe encore plus précis via les permissions.

202

Chapitre 17
Les messages

Difficulté :

I l est souvent utile d’envoyer des notifications au visiteur, pour par exemple lui confirmer
qu’une action s’est bien réalisée, ou au contraire lui indiquer une erreur. Django propose
un petit système de notification simple et pratique qui répond parfaitement à ce besoin.

Nous le présenterons dans ce chapitre.

203

CHAPITRE 17. LES MESSAGES

Les bases

Avant tout, il faut s’assurer que l’application et ses dépendances sont bien installées.
Elles le sont généralement par défaut, néanmoins il est toujours utile de vérifier. Au-
trement dit, dans votre settings.py, vous devez avoir :

– Dans MIDDLEWARE_CLASSES, ’django.contrib.messages.middleware.MessageMid
dleware’ ;

– Dans INSTALLED_APPS, ’django.contrib.messages’ ;
– Dans TEMPLATE_CONTEXT_PROCESSORS (si cette variable n’est pas dans votre set‌
tings.py, inutile de la rajouter, elle contient déjà l’entrée par défaut), ’django.cont
rib.messages.context_processors.messages’.

Cela étant fait, nous pouvons entrer dans le vif du sujet.

Django peut envoyer des notifications (aussi appelées messages) à tous les visiteurs,
qu’ils soient connectés ou non. Il existe plusieurs niveaux de messages par défaut (nous
verrons comment en ajouter par la suite) :

– DEBUG (debug) : message destiné pour la phase de développement uniquement. Ces
messages ne seront affichés que si DEBUG=True dans votre settings.py.

– INFO (info) : message d’information pour l’utilisateur.
– SUCCESS (success) : confirmation qu’une action s’est bien déroulée.
– WARNING (warning) : une erreur n’a pas été rencontrée, mais pourrait être imminente.
– ERROR (error) : une action ne s’est pas déroulée correctement ou une erreur quel-
conque est apparue.

Les mots entre parenthèses sont ce que nous appelons les « tags » de chaque niveau.
Ces tags sont notamment utilisés pour pouvoir définir un style CSS précis à chaque
niveau, afin de pouvoir les différencier.

Voici la fonction à appeler pour envoyer un message depuis une vue :

1 from django.contrib import messages
2 messages.add_message(request , messages.INFO , u'Bonjour visiteur

!')

Ici, nous avons envoyé un message, avec le niveau INFO, au visiteur, contenant « Bonjour
visiteur ! ». Il est important de ne pas oublier le premier argument : request, l’objet
HttpRequest donné à la vue. Sans cela, Django ne saura pas à quel visiteur envoyer le
message.

Il existe également quelques raccourcis pour les niveaux par défaut :

1 messages.debug(request , u'%s requêtes SQL ont été exécutées.' %
compteur)

2 messages.info(request , u'Rebonjour !')
3 messages.success(request , u'Votre article a bien été mis à jour

.')
4 messages.warning(request , u'Votre compte expire dans 3 jours.')
5 messages.error(request , u'Cette image n\'existe plus.')

204

DANS LES DÉTAILS

Maintenant que vous savez envoyer des messages, il ne reste plus qu’à les afficher. Pour
ce faire, Django se charge de la majeure partie du travail. Tout ce qu’il reste à faire,
c’est de choisir où afficher les notifications dans le template. Les variables contenant
celles-ci sont automatiquement incluses grâce à un processeur de contexte. Voici une
ébauche de code de template pour afficher les messages au visiteur :

1 {% if messages %}
2 <ul class="messages">
3 {% for message in messages %}
4 <li{% if message.tags %} class="{{ message.tags }}"{% endif

%}>{{ message }}
5 {% endfor %}
6
7 {% endif %}

La variable messages étant ajoutée automatiquement par le framework, il suffit de
l’itérer, étant donné qu’elle peut contenir plusieurs notifications. À l’itération de chaque
message, ce dernier sera supprimé tout seul, ce qui assure que l’utilisateur ne verra pas
deux fois la même notification. Finalement, un message dispose de l’attribut tags pour
d’éventuels styles CSS (il peut y avoir plusieurs tags, ils seront séparés par une espace),
et il suffit ensuite d’afficher le contenu de la variable.

Ce code est de préférence à intégrer dans une base commune (appelée depuis {% ex‌
tends %}) pour éviter de devoir le réécrire dans tous vos templates.

Dans les détails

Nous avons dit qu’il était possible de créer des niveaux de messages personnalisés. Il faut
savoir qu’en réalité les niveaux de messages ne sont en fait que des entiers constants :

1 >>> from django.contrib import messages
2 >>> messages.INFO
3 20

Voici la relation entre niveau et entier par défaut :

– DEBUG : 10
– INFO : 20
– SUCCESS : 25
– WARNING : 30
– ERROR : 40

Au final, ajouter un niveau suffit juste à créer une nouvelle constante. Par exemple :

1 CRITICAL = 50
2
3 messages.add_message(request , CRITICAL , u'Une erreur critique

est survenue.')

Il est dès lors tout aussi possible d’ajouter des tags à un message :

205

CHAPITRE 17. LES MESSAGES

1 messages.add_message(request , CRITICAL , u'Une erreur critique
est survenue.', extra_tags="fail")

Ici, le tag « fail » sera ajouté.

Pour terminer, sachez que vous pouvez également limiter l’affichage des messages à un
certain niveau (égal ou supérieur). Cela peut se faire de deux manières différentes. Soit
depuis le settings.py en mettant MESSAGE_LEVEL au niveau minimum des messages
à afficher (par exemple 25 pour ne pas montrer les messages DEBUG et INFO), soit en
faisant cette requête dans la vue :

1 messages.set_level(request , messages.DEBUG)

En utilisant cela et pour cette vue uniquement, tous les messages dont le niveau est
égal ou supérieur à 10 (la valeur de messages.DEBUG) seront affichés.

En résumé

– Les messages permettent d’afficher des notifications à l’utilisateur, en cas de succès
ou d’échec lors d’une action, ou si un événement particulier se produit.

– Il existe différents types de messages : ceux d’information, de succès, d’erreur, d’aver-
tissement, et enfin de débogage.

– Il est possible de créer son propre type de message et de configurer son comportement.
– L’affichage de messages peut être limité : chaque type de message est caractérisé
par une constante entière, et nous pouvons afficher les messages ayant un niveau
supérieur ou égal à un certain seuil, via messages.set_level.

206

Chapitre 18
La mise en cache

Difficulté :

L orsqu’un site devient populaire, que son trafic augmente et que toutes les ressources
du serveur sont utilisées, nous constatons généralement des ralentissements ou des
plantages du site. Ces deux cas de figure sont généralement à éviter, et pour ce faire

il faut procéder à des optimisations. Une optimisation courante est la mise en cache, que
nous aborderons dans ce chapitre.

207

CHAPITRE 18. LA MISE EN CACHE

Cachez-vous !

Avant d’aborder l’aspect technique, il faut comprendre l’utilité de la mise en cache.
Si vous présentez dans une vue des données issues de calculs très longs et complexes
(par exemple, une dizaine de requêtes SQL), l’idée est d’effectuer les calculs une fois,
de sauvegarder le résultat et de présenter le résultat sauvegardé pour les prochaines
visites, plutôt que de recalculer la même donnée à chaque fois.

En effet, sortir une donnée du cache étant bien plus rapide et plus simple que de la
recalculer, la durée d’exécution de la page est largement réduite, ce qui laisse donc
davantage de ressources pour d’autres requêtes. Finalement, le site sera moins enclin à
planter ou être ralenti.

Une question subsiste : où faut-il sauvegarder les données ? Django enregistre les don-
nées dans un système de cache, or il dispose de plusieurs systèmes de cache différents
de base. Nous tâcherons de les introduire brièvement dans ce qui suit.

Chacun de ces systèmes a ses avantages et désavantages, et tous fonctionnent un peu
différemment. Il s’agit donc de trouver le système de cache le plus adapté à vos besoins.

La configuration du système de cache se fait grâce à la variable CACHES de votre set‌
tings.py.

Dans des fichiers

Un système de cache simple est celui enregistrant les données dans des fichiers sur le
disque dur du serveur. Pour chaque valeur enregistrée dans le cache, le système va
créer un fichier et y enregistrer le contenu de la donnée sauvegardée. Voici comment le
configurer :

1 CACHES = {
2 'default ': {
3 'BACKEND ': 'django.core.cache.backends.filebased.

FileBasedCache ',
4 'LOCATION ': '/var/tmp/django_cache ',
5 }
6 }

La clé ’LOCATION’ doit pointer vers un dossier, et non pas vers un fichier spécifique.
Si vous êtes sous Windows, voici ce à quoi doit ressembler la valeur de ’LOCATION’ :
’c:/mon/dossier’ (ne pas oublier le c:/ ou autre identifiant de votre disque dur). La
clé ’BACKEND’ indique simplement le système de cache utilisé (et sera à chaque fois
différente pour chaque système présenté par la suite).

Une fois ce système de cache configuré, Django va créer des fichiers dans le dossier
concerné. Ces fichiers seront « sérialisés » en utilisant le module pickle pour y encoder
les données à sauvegarder. Vous devez également vous assurer que votre serveur web a
bien accès en écriture et en lecture sur le dossier que vous avez indiqué.

208

CACHEZ-VOUS !

Dans la mémoire

Un autre système de cache simple est la mise en mémoire. Toutes vos données seront
enregistrées dans la mémoire vive du serveur. Voici la configuration de ce système :

1 CACHES = {
2 'default ': {
3 'BACKEND ': 'django.core.cache.backends.locmem.

LocMemCache ',
4 'LOCATION ': 'cache_crepes '
5 }
6 }

Si vous utilisez cette technique, faites attention à la valeur de ’LOCATION’. En effet,
si plusieurs sites avec Django utilisant cette technique de cache tournent sur le même
serveur, il est impératif que chacun d’entre eux dispose d’un nom de code différent
pour ’LOCATION’. Il s’agit en réalité juste d’un identifiant de l’instance du cache. Si
plusieurs sites partagent le même identifiant, ils risquent d’entrer en conflit.

Dans la base de données

Pour utiliser la base de données comme système de cache, il faut avant tout créer une
table dans celle-ci pour y accueillir les données. Cela se fait grâce à une commande
spéciale de manage.py :

python manage.py createcachetable [nom_table_cache]

où nom_table_cache est le nom de la table que vous allez créer (faites bien attention
à utiliser un nom valide et pas déjà utilisé). Une fois cela fait, tout ce qu’il reste à faire
est de l’indiquer dans le settings.py :

1 CACHES = {
2 'default ': {
3 'BACKEND ': 'django.core.cache.backends.db.DatabaseCache

',
4 'LOCATION ': 'nom_table_cache ',
5 }
6 }

Ce système peut se révéler pratique et rapide si vous avez dédié tout un serveur physique
à votre base de données ; néanmoins, il faut disposer de telles ressources pour arriver à
quelque chose de convenable.

En utilisant Memcached

Memcached est un système de cache un peu à part. Celui-ci est en réalité indépendant
de Django, et le framework ne s’en charge pas lui-même. Pour l’utiliser, il faut avant
tout lancer un programme responsable lui-même du cache. Django ne fera qu’envoyer

209

CHAPITRE 18. LA MISE EN CACHE

les données à mettre en cache et les récupérer par la suite, c’est au programme de
sauvegarder et de gérer ces données.

Si cela peut sembler assez pénible à déployer, le système est en revanche très rapide
et probablement le plus efficace de tous. Memcached va enregistrer les données dans
la mémoire vive, comme le système vu précédemment qui utilisait la même technique,
sauf qu’en comparaison de ce dernier Memcached est bien plus efficace et utilise moins
de mémoire.

Memcached n’existe officiellement que sous Linux. Si vous êtes sous Debian ou dérivés,
vous pouvez l’installer grâce à apt-get install memcached. Pour les autres distribu-
tions, référez-vous à la liste des paquets fournis par votre gestionnaire de paquets. Une
fois que Memcached est installé, vous pouvez lancer le démon en utilisant la commande
memcached -d -m 512 -l 127.0.0.1 -p 11211, où le paramètre -d permet le lance-
ment du démon, -m indique la taille maximale de mémoire vive allouée au cache (en
mégaoctets), et -l et -p donnent respectivement l’adresse IP et le port d’écoute du
démon.

La configuration côté Django est encore une fois relativement simple :

1 CACHES = {
2 'default ': {
3 'BACKEND ': 'django.core.cache.backends.memcached.

MemcachedCache ',
4 'LOCATION ': '127.0.0.1:11211 ',
5 }
6 }

La clé ’LOCATION’ indique la combinaison adresse IP/port depuis laquelle Memcached
est accessible. Nous avons adapté la valeur de la variable à la commande indiquée
ci-dessus.

Pour le développement

Pour terminer, il existe un dernier système de cache. Celui-ci ne fait rien (il n’enregistre
aucune donnée et n’en renvoie aucune). Il permet juste d’activer le système de cache,
ce qui peut se révéler pratique si vous utilisez le cache en production, mais que vous
n’en avez pas besoin en développement. Voici sa configuration :

1 CACHES = {
2 'default ': {
3 'BACKEND ': 'django.core.cache.backends.dummy.DummyCache

',
4 }
5 }

Au final, quel système choisir ?

210

QUAND LES DONNÉES JOUENT À CACHE-CACHE

Cela dépend de votre site et de vos attentes. En développement, vous pouvez utiliser le
cache de développement ou le cache mémoire (le simple, pas celui-ci utilisant Memca-
ched) si vous en avez besoin. En production, si vous avez peu de données à mettre en
cache, la solution la plus simple est probablement le système utilisant les fichiers. En
revanche, lorsque le cache devient fortement utilisé, Memcached est probablement la
meilleure solution si vous pouvez l’installer. Sinon utilisez le système utilisant la base
de données, même s’il n’est pas aussi efficace que Memcached, il devrait tout de même
apaiser votre serveur.

Quand les données jouent à cache-cache

Maintenant que notre cache est configuré, il ne reste plus qu’à l’utiliser. Il existe diffé-
rentes techniques de mise en cache que nous expliquerons dans ce sous-chapitre.

Cache par vue

Une méthode de cache pratique est la mise en cache d’une vue. Avec cette technique,
dès que le rendu d’une vue est calculé, il sera directement enregistré dans le cache. Tant
que celui-ci sera dans le cache, la vue ne sera plus appelée et la page sera directement
cherchée dans le cache.

Cette mise en cache se fait grâce à un décorateur : django.views.decorators.cache.c
ache_page. Voici son utilisation :

1 from django.views.decorators.cache import cache_page
2
3 @cache_page(60 * 15)
4 def ma_vue(request):
5 ...

Le paramètre du décorateur correspond à la durée après laquelle le rendu dans le cache
aura expiré. Cette durée est exprimée en secondes. Autrement dit, ici, après 15 fois
60 secondes — donc 15 minutes — la donnée sera supprimée du cache et Django de-
vra régénérer la page, puis remettre la nouvelle version dans le cache. Grâce à cet
argument, vous êtes assurés que le cache restera à jour automatiquement. Bien évi-
demment, chaque URL aura sa propre mise en cache. En effet, si /article/42/ et
/article/1337/ pointent vers la même vue lire_article, où le nombre correspond
à l’ID d’un article précis dans la base de données :

1 @cache_page
2 def lire_article(request , id):
3 article = Article.objects.get(id=id)
4 ...

. . . il est normal que /article/42/ et /article/1337/ ne partagent pas le même
résultat en cache (étant donné qu’ils n’affichent pas le même article). Il est également

211

CHAPITRE 18. LA MISE EN CACHE

possible de spécifier une mise en cache directement depuis les URLconf. Ainsi, la mise
en cache de vues génériques est également possible :

1 from django.views.decorators.cache import cache_page
2
3 urlpatterns = ('',
4 (r'^article /(\d{1,4})/$', cache_page(60 * 15)(lire_article)

),
5)

Ici, le décorateur @cache_page est tout de même appliqué à la vue. Faites bien attention
à inclure la vue sous forme de référence, et non pas sous forme de chaîne de caractères.

Dans les templates

Il est également possible de mettre en cache certaines parties d’un template. Cela se
fait grâce au tag {% cache %}. Ce tag doit au préalable être inclus grâce à la directive
{% load cache %}. De plus, cache prend deux arguments au minimum : la durée
d’expiration de la valeur (toujours en secondes), et le nom de cette valeur en cache
(une sorte de clé que Django utilisera pour retrouver la bonne valeur dans le cache) :

1 {% load cache %}
2 {% cache 500 carrousel %}
3 /* mon carrousel */
4 {% endcache %}

Ici, nous enregistrons dans le cache notre carrousel. Celui-ci expirera dans 500 secondes
et nous utilisons la clé carrousel.

Sachez que vous pouvez également enregistrer plusieurs copies en cache d’une même
partie de template dépendant de plusieurs variables. Par exemple, si notre carrousel est
différent pour chaque utilisateur, vous pouvez réutiliser une clé dynamique et différente
pour chaque utilisateur. Ainsi, chaque utilisateur connecté aura dans le cache la copie
du carrousel adaptée à son profil. Exemple :

1 {% load cache %}
2 {% cache 500 user.username %}
3 /* mon carrousel adapté à l’utilisateur actuel */
4 {% endcache %}

La mise en cache de bas niveau

Il arrive parfois qu’enregistrer toute une vue ou une partie de template soit une solution
exagérée, et non adaptée. C’est là qu’interviennent plusieurs fonctions permettant de
réaliser une mise en cache de variables bien précises. Presque tous les types de variables
peuvent être mis en cache. Ces opérations sont réalisées grâce à plusieurs fonctions de
l’objet cache du module django.core.cache. Cet objet cache se comporte un peu
comme un dictionnaire. Nous pouvons lui assigner des valeurs à travers des clés :

212

QUAND LES DONNÉES JOUENT À CACHE-CACHE

1 >>> from django.core.cache import cache
2 >>> cache.set('ma_cle ', 'Coucou !', 30)
3 >>> cache.get('ma_cle ')
4 'Coucou !'

Ici, la clé ’ma_cle’ contenant la chaîne de caractères ’Coucou !’ a été enregistrée
pendant 30 secondes dans le cache (l’argument de la durée est optionnel ; s’il n’est pas
spécifié, la valeur par défaut de la configuration sera utilisée). Vous pouvez essayer,
après ces 30 secondes, get renvoie None si la clé n’existe pas ou plus :

1 >>> cache.get('ma_cle ')
2 None

Il est possible de spécifier une valeur par défaut si la clé n’existe pas ou plus :

1 >>> cache.get('ma_cle ', u'a expiré')
2 'a expiré'

Pour essayer d’ajouter une clé si elle n’est pas déjà présente, il faut utiliser la méthode
add. Si cette clé est déjà présente, rien ne se passe :

1 >>> cache.set('cle', 'Salut')
2 >>> cache.add('cle', 'Coucou ')
3 >>> cache.get('cle')
4 'Salut'

Pour ajouter et obtenir plusieurs clés à la fois, il existe deux fonctions adaptées,
set_many et get_many :

1 >>> cache.set_many ({'a': 1, 'b': 2, 'c': 3})
2 >>> cache.get_many (['a', 'b', 'c'])
3 {'a': 1, 'b': 2, 'c': 3}

Vous pouvez également supprimer une clé du cache :

1 >>> cache.delete('a')

. . . ou plusieurs en même temps :

1 >>> cache.delete_many (['a', 'b', 'c'])

Pour vider tout le cache, voici la méthode clear :

1 >>> cache.clear()

Toutes les clés et leurs valeurs seront supprimées.

Pour terminer, il existe encore deux fonctions, incr et decr, qui permettent respecti-
vement d’incrémenter et de décrémenter un nombre dans le cache :

1 >>> cache.set('num', 1)
2 >>> cache.incr('num')
3 2
4 >>> cache.incr('num', 10)

213

CHAPITRE 18. LA MISE EN CACHE

5 12
6 >>> cache.decr('num')
7 11
8 >>> cache.decr('num', 5)
9 6

Le deuxième paramètre permet de spécifier le nombre d’incrémentations ou de décré-
mentations à effectuer.

Voilà ! Vous avez désormais découvert les bases du système de cache de Django. Cepen-
dant, nous n’avons vraiment que couvert les bases, il reste plein d’options à explorer, la
possibilité d’implémenter son propre système de cache, etc. Si vous vous sentez limités
sur ce sujet ou que vous avez d’éventuelles questions non reprises dans ce chapitre,
consultez la documentation.

En résumé

– Le cache permet de sauvegarder le résultat de calculs ou traitements relativement
longs, afin de présenter le résultat sauvegardé pour les prochaines visites, plutôt que
de recalculer la même donnée à chaque fois.

– Il existe plusieurs systèmes de mise en cache : par fichier, en base de données, dans
la mémoire RAM.

– La mise en cache peut être définie au niveau de la vue, via @cache_page, dans le
fichier urls.py, ou encore dans les templates avec le tag {% cache %}.

– Django fournit également un ensemble de fonctions permettant d’appliquer une mise
en cache à tout ce que nous souhaitons, et d’en gérer précisément l’expiration de la
validité.

214

Chapitre 19
La pagination

Difficulté :

U n autre outil fréquemment utilisé sur les sites web de nos jours est la pagination. La
pagination est le fait de diviser une liste d’objets en plusieurs pages, afin d’alléger la
lecture d’une page (et son chargement). Nous allons voir dans ce chapitre comment

réaliser une pagination avec les outils que Django propose.

215

CHAPITRE 19. LA PAGINATION

Exerçons-nous en console

Django permet de répartir des ensembles d’objets sur plusieurs pages : des listes, des
QuerySet, etc. En réalité, tous les objets ayant une méthode count ou __len__ sont
acceptés.

Notre premier exemple utilisera une simple liste et sera effectué dans l’interpréteur
interactif. Ouvrez une console et tapez la commande python manage.py shell pour
lancer l’interpréteur.

Django fournit une classe nommée Paginator qui effectue la pagination. Elle se situe
dans le module django.core.paginator. Nous devons donc en premier lieu l’importer :

1 >>> from django.core.paginator import Paginator

Ensuite, créons une liste quelconque. Nous avons sélectionné une liste de grandes villes :

1 >>> from django.core.paginator import Paginator
2 >>> villes = ['Tokyo','Mexico ','Seoul','New York','Bombay ','

Karachi ','Sao Paulo ','Manille ','Bangkok ',
3 'New Delhi ','Djakarta ','Shanghai ','Los Angeles ','Kyoto','Le

Caire','Calcutta ','Moscou ','Istanbul ',
4 'Buenos Aires','Dacca','Gauteng ','Teheran ','Pekin']

La classe Paginator est instanciée avec deux paramètres : la liste d’objets à répartir
et le nombre maximum d’objets à afficher par page. Imaginons que nous souhaitions
afficher 5 villes par page :

1 >>> p = Paginator(villes , 5)

Nous venons d’instancier un objet Paginator. Cet objet possède les attributs suivants :

1 >>> p.count #Nombre d'objets au total , toutes pages
confondues

2 23
3 >>> p.num_pages #Nombre de pages nécessaires pour répartir

toutes les villes
4 5 #En effet , 4 pages avec 5 villes et 1 page

avec 3 villes
5
6 >>> p.page_range #La liste des pages disponibles
7 [1, 2, 3, 4, 5]

Nous pouvons obtenir les villes d’une page précise grâce la méthode page(). Cette
méthode renvoie un objet Page, dont voici les méthodes principales :

1 >>> page1 = p.page(1) #Renvoie un objet Page pour notre premiè
re page

2 >>> page1
3 <Page 1 of 5>
4 >>> page1.object_list
5 ['Tokyo', 'Mexico ', 'Seoul', 'New York', 'Bombay '] #Le contenu

de cette première page

216

EXERÇONS-NOUS EN CONSOLE

6 >>> p.page(5).object_list #Même opération pour la cinquième
page

7 ['Gauteng ', 'Teheran ', 'Pekin']
8 >>> page1.has_next () #Est -ce qu'il y a une page suivante ?
9 True #Oui

10 >>> page1.has_previous () #Est -ce qu'il y a une page précédente
?

11 False #Non

Soyez vigilants, la numérotation des pages commence bien à 1, et non pas à 0 comme
pour les listes par exemple. Remarquez les comportements suivants :

1 >>> p.page(0)
2 Traceback (most recent call last):
3 [...]
4 django.core.paginator.EmptyPage: That page number is less than

1
5 >>> p.page(6)
6 Traceback (most recent call last):
7 [...]
8 django.core.paginator.EmptyPage: That page contains no results
9 >>> p.page('abc')

10 Traceback (most recent call last):
11 [...]
12 django.core.paginator.PageNotAnInteger: That page number is not

an integer

Avant d’attaquer l’utilisation de la pagination dans nos vues et templates, étudions deux
autres situations permettant de compléter au mieux notre système de pagination. Il y
a deux arguments de Paginator que nous n’avons pas traités. En effet, le constructeur
complet de Paginator accepte deux paramètres optionnels.

Tout d’abord, le paramètre orphans permet de préciser le nombre minimum d’éléments
qu’il faut pour afficher une dernière page. Si le nombre d’éléments est inférieur au
nombre requis, alors ces éléments sont déportés sur la page précédente (qui devient
elle-même la dernière page), en plus des éléments qu’elle contient déjà. Prenons notre
exemple précédent :

1 >>> p = Paginator(villes , 10 , 5)
2 >>> p.num_pages
3 2
4 >>> p.page(1).object_list
5 ['Tokyo', 'Mexico ', 'Seoul', 'New York', 'Bombay ', 'Karachi ', '

Sao Paulo ', 'Manille ', 'Bangkok ', 'New Delhi ']
6 >>> p.page(2).object_list
7 ['Djakarta ', 'Shanghai ', 'Los Angeles ', 'Kyoto', 'Le Caire ', '

Calcutta ', 'Moscou ', 'Istanbul ', 'Buenos Aires', 'Dacca', '
Gauteng ', 'Teheran ', 'Pekin']

Nous voyons que la dernière page théorique (la 3e) aurait du contenir 3 éléments
(Gauteng, Teheran et Pekin), ce qui est inférieur à 5. Ces éléments sont donc affi-

217

CHAPITRE 19. LA PAGINATION

chés en page 2, qui devient la dernière, avec 13 éléments.

Le dernier attribut, allow_empty_first_page, permet de lancer une exception si la
première page est vide. Autrement dit, une exception est levée s’il n’y a aucun élément
à afficher. Un exemple est encore une fois plus parlant :

1 >>> pt = Paginator ([], 42)
2 >>> pf = Paginator ([], 42 , 0, False) #Nous initialisons deux

Paginator avec une liste vide
3 >>> pt.page(1) #Comportement par défaut si la liste est vide
4 <Page 1 of 1>
5 >>> pt.page(1).object_list
6 []
7 >>> pf.page(1)
8 Traceback (most recent call last):
9 [...]

10 django.core.paginator.EmptyPage: That page contains no results

Nous avons désormais globalement fait le tour, place à la pratique !

Utilisation concrète dans une vue

Nous avons vu comment utiliser la pagination de façon autonome, maintenant nous
allons l’utiliser dans un cas concret. Nous reprenons notre vue simple (pas celle utilisant
les vues génériques) du TP sur la minification d’URL :

1 def liste(request):
2 """ Affichage des redirections """
3 minis = MiniURL.objects.order_by('-nb_acces ')
4
5 return render(request , 'mini_url/liste.html', locals ())

Nous allons tout d’abord ajouter un argument page à notre vue, afin de savoir quelle
page l’utilisateur souhaite voir. Pour ce faire, il y a deux méthodes :

– Passer le paramètre page via un paramètre GET (/url/?page=1) ;
– Modifier la définition de l’URL et la vue pour prendre en compte un numéro de page
(/url/1 pour la première page).

Nous traiterons ici le second cas. Le premier cas se résume à un simple request.GET.ge
t(’page’) dans la vue pour récupérer le numéro de page. Nous modifions donc légè-
rement notre vue pour le paramètre page :

1 def liste(request , page=1):
2 """ Affichage des redirections """
3 minis = MiniURL.objects.order_by('-nb_acces ')
4
5 return render(request , 'mini_url/liste.html', locals ())

Et notre fichier urls.py :

218

UTILISATION CONCRÈTE DANS UNE VUE

1 urlpatterns = patterns('mini_url.views',
2 url(r'^$', 'liste', name='url_liste '), # Pas d'argument

page précisé -> vaudra 1 par défaut
3 url(r'^(?P<page >\d+)$', 'liste', name='url_liste '),
4 # ...

Nous créons donc un objet Paginator à partir de cette liste, comme nous avons pu le
faire au début de ce chapitre. Nous avons également vu que Paginator permettait de
récupérer les objets d’une page précise : c’est ce que nous utiliserons désormais pour
renvoyer au template la liste d’URL à afficher.

1 from django.core.paginator import Paginator , EmptyPage # Ne
pas oublier l'importation

2
3 def liste(request , page=1):
4 """ Affichage des redirections """
5 minis_list = MiniURL.objects.order_by('-nb_acces ')
6 paginator = Paginator(minis_list , 5) # 5 liens par page
7
8 try:
9 # La définition de nos URL autorise comme argument «

page » uniquement des entiers ,
10 # nous n'avons pas à nous soucier de l'erreur

PageNotAnInteger
11 minis = paginator.page(page)
12 except EmptyPage:
13 # Nous vérifions toutefois que nous ne dépassons pas

la limite de page
14 # Par convention , nous renvoyons la dernière page

dans ce cas
15 minis = paginator.page(paginator.num_pages)
16
17 return render(request , 'mini_url/liste.html', locals ())

En ajoutant 5 lignes de code (sans prendre en compte les commentaires), nous disposons
désormais d’une pagination robuste, gérant tous les cas limites. Si vous testez la vue
actuellement, vous verrez que l’adresse http://127.0.0.1:8000/m/ (attention, l’URL
dépend de la configuration que vous avez utilisée durant le TP) renvoie les 5 premières
URL (ajoutez-en si vous en avez moins), http://127.0.0.1:8000/m/2 les 5 suivantes,
etc.

Passons désormais au template. En effet, pour l’instant il est impossible de passer d’une
page à l’autre sans jouer avec l’URL et il est impossible de savoir le nombre de pages
qu’il y a. Pour renseigner toutes ces informations, nous allons utiliser les informations
que nous avons vues précédemment :

1 <h1>Le raccourcisseur d’URL spécial crêpes bretonnes !</h1>
2
3 <p>Raccourcir une URL.</p

>
4

219

CHAPITRE 19. LA PAGINATION

5 <p>Liste des URL raccourcies :</p>
6
7 {% for mini in minis %}
8 Mettre à

jour -
Supprimer

9 | {{ mini.url }} via <a href="http ://{{ request.get_host
}}{% url 'url_redirection ' mini.code %}">

10 {{ request.get_host }}{% url '
url_redirection ' mini.code %}

11 {% if mini.pseudo %}par {{ mini.
pseudo }}{% endif %}

12 ({{ mini.nb_acces }} accès)
13 {% empty %}
14 Il n’y en a pas actuellement .
15 {% endfor %}
16
17
18 <div class="pagination">
19
20 {% if minis.has_previous %}
21 <a href="{% url 'url_liste ' minis.

previous_page_number %}">Précédente -
22 {% endif %}
23
24
25 Page {{ minis.number }} sur {{ minis.paginator.

num_pages }}
26
27
28 {% if minis.has_next %}
29 - <a href="{% url 'url_liste ' minis.next_page_number

%}">Suivante
30 {% endif %}
31
32 </div >

Nous utilisons bien ici les méthodes has_next et has_previous pour savoir s’il faut
afficher les liens « Précédent » et « Suivant ». Nous profitons également de l’attribut
num_pages de Paginator afin d’afficher le total de pages.

Un bon conseil que nous pouvons vous donner, et en même temps un bon
exercice à faire, est de créer un template générique gérant la pagination et
de l’appeler où vous en avez besoin, via {% include "pagination.html"
with liste=minis view="url_liste" %}.

Vous pouvez maintenant adapter la pagination comme vous voulez en modifiant la ligne
appelant Paginator !

220

UTILISATION CONCRÈTE DANS UNE VUE

1 paginator = Paginator(minis_list , 20, 5) # 20 liens par page ,
avec un minimum de 5 liens sur la dernière

Nous en avons fini avec la pagination. Ce module est l’exemple le plus frappant de ce
que nous pouvons faire avec Django en seulement quelques lignes, tout en changeant
très peu de code par rapport à la base de départ.

En résumé

– La classe django.core.paginator.Paginator permet de générer la pagination de
plusieurs types de listes d’objets et s’instancie avec au minimum une liste et le nombre
d’éléments à afficher par page.

– Les attributs et méthodes clés de Paginator à retenir sont p.num_pages et p.page().
La classe Page a notamment les méthodes has_next(), has_previous() et est ité-
rable afin de récupérer les objets de la page courante.

– Il est possible de rendre la pagination plus pratique en prenant en compte l’argument
orphans de Paginator.

– Pensez à uniformiser vos paginations en terme d’affichage au sein de votre site web,
pour ne pas perturber vos visiteurs.

221

CHAPITRE 19. LA PAGINATION

222

Chapitre 20
L’internationalisation

Difficulté :

D e nos jours, la plupart des sites web proposent plusieurs langues à leurs utilisateurs,
et ciblent même la langue par défaut en fonction du visiteur. Ce concept apporte son
lot de problèmes lors de la réalisation d’un site : que faut-il traduire ? Quelle méthode

faut-il utiliser pour traduire facilement l’application, sans dupliquer le code ?

Nous allons voir dans ce chapitre comment traduire notre site en plusieurs langues, de façon
optimale sans dupliquer nos templates et vues, via des méthodes fournies dans Django et
l’outil gettext permettant de créer des fichiers de langue.

Sachez que par convention en informatique le mot « internationalisation » est souvent
abrégé par « i18n » ; cela est dû au fait que 18 lettres séparent le « i » du « n » dans
ce mot si long à écrire ! Nous utiliserons également cette abréviation tout au long de ce
chapitre.

223

CHAPITRE 20. L’INTERNATIONALISATION

Qu’est-ce que le i18n et comment s’en servir ?

Avant de commencer, vous devez avoir installé gettext sur votre machine.

Sous Mac OS X

Vous devez télécharger le code source et le compiler, ou installer le paquet gettext à
partir des MacPorts.

B

�

�
	Télécharger le code source

Code web : 784570

Sous Linux

Gettext est généralement installé par défaut. Si ce n’est pas le cas, cherchez un paquet
nommé « gettext » adapté à votre distribution, ou procédez à l’installation manuelle,
comme pour Mac OS X.

Sous Windows

Voici la méthode d’installation complète :

1. Téléchargez les archives suivantes (avec X supérieur ou égal à 0.15) grâce au code
web suivant :

B

�

�
	Télécharger les archives

Code web : 235216
– gettext-runtime-X.zip
– gettext-tools-X.zip

2. Extrayez le contenu des deux dossiers dans un répertoire \bin commun (par
exemple C:\Program Files\gettext\bin).

3. Mettez à jour votre variable d’environnement PATH (voir le chapitre d’installation
de Django si besoin) en ajoutant ;C:\Program Files\gettext\bin à la fin de
la valeur de la variable.

Vérifiez en ouvrant une console que la commande xgettext –version fonctionne sans
erreur. En cas d’erreur, retéléchargez gettext via les liens précédents !

Pour commencer, nous devons nous attarder sur quelques définitions, afin d’avoir les
idées au clair. Dans l’introduction, nous avons parlé d’internationalisation, dont le but
est de traduire une application dans une autre langue. En réalité, ce travail se divise
en deux parties :

1. L’internationalisation (i18n) à proprement parler, qui consiste à adapter la partie
technique (le code même de l’application) afin de permettre la traduction littérale
par la suite ;

224

http://www.siteduzero.com/codeweb/784570
http://www.siteduzero.com/codeweb/235216

QU’EST-CE QUE LE I18N ET COMMENT S’EN SERVIR ?

2. La localisation (l10n), qui est la traduction (et parfois l’adaptation culturelle) de
l’application.

La figure 20.1 schématise les différentes étapes.

Figure 20.1 – Cycle de traduction d’un logiciel

Tout au long de ce chapitre, nous allons suivre le déroulement du cycle de la figure
précédente, dont tous les détails vous seront expliqués en temps et en heure. Mais tout
d’abord, il nous faut configurer un peu notre projet, via settings.py.

Par défaut, lors de la création du projet, Django prédéfinit trois variables concernant
l’internationalisation et la localisation :

1 # Language code for this installation. All choices can be found
here:

2 # http :// www.i18nguy.com/unicode/language -identifiers.html
3 LANGUAGE_CODE = 'fr -fr'
4
5 # If you set this to False , Django will make some optimizations

so as not
6 # to load the internationalization machinery.
7 USE_I18N = True
8
9 # If you set this to False , Django will not format dates ,

numbers and
10 # calendars according to the current locale
11 USE_L10N = True

LANGUAGE_CODE permet de définir la langue par défaut utilisée dans vos applications.
La variable USE_I18N permet d’activer l’internationalisation, et donc de charger plu-
sieurs éléments en interne permettant son fonctionnement. Si votre site n’utilise pas
l’internationalisation, il est toujours bon d’indiquer cette variable à False, afin d’éviter
le chargement de modules inutilisés. De la même manière, USE_L10N permet d’auto-

225

CHAPITRE 20. L’INTERNATIONALISATION

matiquement formater certaines données en fonction de la langue de l’utilisateur : les
dates ou encore la représentation des nombres.

Par exemple, la ligne {% now "DATETIME_FORMAT" %} renvoie des résultats différents
selon la valeur de USE_L10N et de LANGUAGE_CODE :

LANGUAGE_CODE/USE_L10N False True
en-us Jan. 30, 2013, 9 :50 p.m. Jan. 30, 2013, 9 :50 p.m.
fr-fr jan. 30, 2013, 9 :50 après-

midi
30 janvier 2013 21 :50 :46

Ensuite, nous devons préciser la liste des langues disponibles pour notre projet. Cette
liste nous permet d’afficher un formulaire de choix, mais permet aussi à Django de
limiter les choix possibles et donc d’éviter de chercher une traduction dans une langue
qui n’existe pas. Cette liste se présente comme ceci :

1 gettext = lambda x: x
2
3 LANGUAGES = (
4 ('fr', gettext('French ')),
5 ('en', gettext('English ')),
6)

Au lieu d’importer la fonction gettext, introduite par la suite, nous avons créé une
fausse fonction qui ne fait rien. En effet, il ne faut pas importer les fonctions de
django.utils.translation dans notre fichier de configuration, car ce module dépend
de notre fichier, ce qui créerait une boucle infinie dans les importations de modules !

Pour la suite de ce chapitre, il sera nécessaire d’avoir les réglages suivants dans votre
settings.py :

1 #Nous avons par défaut écrit l'application en français
2 LANGUAGE_CODE = 'fr -fr'
3
4 #Nous souhaitons générer des fichiers contenant les traductions

, afin de permettre à l'utilisateur de choisir sa langue par
la suite

5 USE_I18N = True
6
7 #Nous adaptons les formats d'écriture de certains champs à la

langue française
8 USE_L10N = True
9

10 gettext = lambda x: x
11
12 LANGUAGES = (
13 ('fr', gettext('French ')),
14 ('en', gettext('English ')),
15)

226

TRADUIRE LES CHAÎNES DANS NOS VUES ET MODÈLES

Finalement, il nous faut encore ajouter deux lignes : un middleware et un proces-
seur de contexte. Le premier permet de déterminer selon un certain ordre la langue
courante de l’utilisateur. En effet, Django va tenter pour chaque visiteur de trouver la
langue la plus adaptée en procédant par étape :

1. Dans un premier temps, il est possible de configurer les URL pour les préfixer
avec la langue voulue. Si ce préfixe apparaît, alors la langue sera forcée.

2. Si aucun préfixe n’apparaît, le middleware vérifie si une langue est précisée dans
la session de l’utilisateur.

3. En cas d’échec, le middleware vérifie dans les cookies du visiteur si un cookie
nommé django_language (nom par défaut) existe.

4. En cas d’échec, il vérifie la requête HTTP et vérifie si l’en-tête Accept-Language
est envoyé. Cet en-tête, envoyé par le navigateur du visiteur, spécifie les langues
de prédilection, par ordre de priorité. Django essaie chaque langue une par une,
selon celles disponibles dans notre projet.

5. Enfin, si aucune de ces méthodes ne fonctionne, alors Django se rabat sur le
paramètre LANGUAGE_CODE.

Le second, le template context processor, nous permettra d’utiliser les fonctions de
traduction, via des tags, dans nos templates.

Pour activer correctement l’internationalisation, nous devons donc modifier la liste des
middlewares et contextes à charger :

1 MIDDLEWARE_CLASSES = (
2 [...] # Liste des autres middlewares déjà chargés
3 'django.middleware.locale.LocaleMiddleware ',
4)
5 TEMPLATE_CONTEXT_PROCESSORS = (
6 [...] # Liste des autres template context déjà chargés
7 "django.core.context_processors.i18n",
8)

Nous en avons terminé avec les fichiers de configuration et pouvons dès lors passer à
l’implémentation de l’internationalisation dans notre code !

Traduire les chaînes dans nos vues et modèles

Adaptons notre code pour l’internationalisation. Nous devons gérer deux cas distincts :
les vues et modèles, dans lesquels nous pouvons parfois avoir des chaînes de caractères
à internationaliser, et nos templates, qui contiennent également de nombreuses chaînes
de caractères à traduire. Notez qu’ici nous parlerons toujours de traduire dans une autre
langue sans pour autant préciser laquelle. En effet, nous nous occupons de préciser ici
ce qui doit être traduit, sans spécifier pour autant les différentes traductions.

Commençons par les vues. Pour rendre traduisibles les chaînes de caractères qui y sont
présentes, nous allons appliquer une fonction à chacune. Cette fonction se chargera

227

CHAPITRE 20. L’INTERNATIONALISATION

ensuite de renvoyer la bonne traduction selon la langue de l’utilisateur. Si la langue
n’est pas supportée ou si la chaîne n’a pas été traduite, la chaîne sera alors affichée
dans la langue par défaut.

La bibliothèque dont provient cette fonction spéciale est bien connue dans le domaine
de l’internationalisation, puisqu’il s’agit de gettext, une bibliothèque logicielle dédiée
à l’internationalisation. Dans Django, celle-ci se décompose en plusieurs fonctions que
nous allons explorer dans cette partie :

– gettext et ugettext ;
– gettext_lazy et ugettext_lazy ;
– ngettext et ungettext ;
– ngettext_lazy et ungettext_lazy ;
– Etc.

Avant d’explorer les fonctions une à une, sachez que nous allons tout d’abord diviser
leur nombre par 2 : si vous regardez attentivement cette liste, vous remarquez que
chacune existe avec et sans « u » comme première lettre. Les fonctions commençant
par « u » signifient qu’elles supportent l’unicode, alors que les autres retournent des
chaînes en ASCII. Nous partons du principe que nous utiliserons uniquement celles
préfixées d’un « u », étant donné que la majorité de nos chaînes de caractères utilisent
l’unicode.

Pour commencer, créons d’abord une nouvelle vue, qui renverra plusieurs chaînes de
caractères au template :

1 def test_i18n(request):
2 nb_chats = 1
3 couleur = "blanc"
4 chaine = u"Bonjour les zéros !"
5 ip = u"Votre IP est %s" % request.META['REMOTE_ADDR ']
6 infos = u"... et selon mes informations , vous avez %s chats

%s !" % (nb_chats , couleur)
7
8 return render(request , 'test_i18n.html', locals ())

Et voici le fichier test_i18n.html :

1 <p>
2 Bonjour les zéros !

3 {{ chaine }}
4 </p>
5 <p>
6 {{ ip }} {{ infos }}
7 </p>

Tout au long de ce chapitre, nous ne vous indiquerons plus les directives de
routage de urls.py. Vous devriez en effet être capables de faire cela vous-
mêmes.

Ce fichier contient plusieurs chaînes écrites en français, qu’il faudra nécessairement tra-

228

TRADUIRE LES CHAÎNES DANS NOS VUES ET MODÈLES

duire par la suite. Nous remarquons par ailleurs que certaines peuvent poser problème
au niveau des formes du pluriel (dans le cas présent, il ne devrait pas y avoir de « s »
à « chats », étant donné qu’il n’y en a qu’un seul !)

Tout d’abord, nous allons importer ugettext, afin de pouvoir utiliser la fonction dont
nous avons parlé plus haut. Nous pourrions l’importer de la sorte :

1 from django.utils.translation import ugettext

Cependant, nous serons amenés à utiliser très souvent cette méthode, et tout le temps
sur le même type d’objet (des chaînes de caractères statiques). Vous verrez alors appa-
raître de nombreux ugettext(...) dans votre application, ce qui serait très redondant.
Une habitude, presque devenue une convention, est d’imposer cette fonction avec l’alias
_ (underscore), afin de rendre votre code plus lisible :

1 from django.utils.translation import ugettext as _

Dès lors, il ne nous reste plus qu’à appliquer cette méthode à nos chaînes :

1 def test_i18n(request):
2 nb_chats = 1
3 couleur = "blanc"
4 chaine = _(u"Bonjour les zéros !")
5 ip = _(u"Votre IP est %s") % request.META['REMOTE_ADDR ']
6 infos = _(u"... et selon mes informations , vous avez %s

chats %s !") % (nb_chats , couleur)
7
8 return render(request , 'test_i18n.html', locals ())

En testant ce code, rien ne change à l’affichage de la page. En effet, la fonction gettext
n’a aucun effet pour le moment, puisque nous utilisons la langue par défaut à l’affichage.
Avant d’aller plus loin, il convient de préciser que ce code n’est en réalité pas totalement
correct. Dans un premier temps, les pluriels ne s’accordent pas en fonction de la valeur
de nb_chats, et cela même dans la langue par défaut. Pour corriger cela, il faut utiliser
une autre fonction, cousine de gettext, qui est ungettext, dans le même module. Cette
fonction permet de fournir une chaîne pour le cas singulier, une pour le cas pluriel et
enfin la variable déterminant le cas à afficher. Pour le cas de nos amis les félins, cela
donne :

1 from django.utils.translation import ugettext as _
2 from django.utils.translation import ungettext
3
4 def test_i18n(request):
5 nb_chats = 2
6 couleur = "blanc"
7 chaine = _(u"Bonjour les zéros !")
8 ip = _(u"Votre IP est %s") % request.META['REMOTE_ADDR ']
9 infos = ungettext(u"... et selon mes informations , vous

avez %s chat %s !",
10 u"... et selon mes informations , vous

avez %s chats %ss !",

229

CHAPITRE 20. L’INTERNATIONALISATION

11 nb_chats) % (nb_chats , couleur)
12
13 return render(request , 'test_i18n.html', locals ())

Vous pouvez déjà tester, en changeant la variable nb_chats de 2 à 1, les « s » après
« chat » et « blanc » disparaissent.

Cependant, nous avons encore un autre problème. Lorsque nous imaginons une traduc-
tion en anglais de cette chaîne, une des solutions pour le cas singulier serait : « . . . and
according to my informations, you have %s %s cat », afin d’avoir « . . . and according
to my informations, you have 1 white cat » par exemple. Cependant, en français, l’ad-
jectif se situe après le nom contrairement à l’anglais où il se situe avant. Cela nécessite
d’inverser l’ordre de nos variables à l’affichage : dans le cas présent nous allons plutôt
obtenir « you have white 1 cat » !

Pour ce faire, il est possible de nommer les variables au sein de la chaîne de caractères,
ce que nous vous recommandons de faire tout le temps, même si vous n’avez qu’une
variable dans votre chaîne. Une troisième version de notre vue est donc :

1 def test_i18n(request):
2 nb_chats = 2
3 couleur = "blanc" # Nous supposons que tous les chats vont

avoir la même couleur
4 chaine = _(u"Bonjour les zéros !")
5 ip = _(u"Votre IP est %(ip)s") % {'ip': request.META['

REMOTE_ADDR ']}
6 infos = ungettext(u"... et selon mes informations , vous

avez %(nb)s chat %(color)s !",
7 u"... et selon mes informations , vous

avez %(nb)s chats %(color)ss !",
8 nb_chats) % {'nb': nb_chats , 'color':

couleur}
9

10 return render(request , 'test_i18n.html', locals ())

De cette façon, il sera possible d’inverser l’ordre de %(nb)s et %(color)s, permettant
la traduction la plus naturelle possible.

Pour finir la thématique des vues, nous allons aider encore un peu plus les traducteurs.
Il se peut que certaines chaînes soient difficiles à traduire hors de leur contexte. Par
exemple, imaginons que vous ayez la chaîne suivante :

1 quota = _("3 livres")

Ici, si nous ne connaissons pas du tout le contexte, le mot « livre » pourrait correspondre
à l’objet que nous lisons, mais aussi à l’unité de poids dans le système de mesures anglo-
saxon. Dans ce cas, il est bon de préciser au traducteur ce que signifie réellement la
chaîne. Pour ce faire, nous allons commenter notre code, en préfixant le commentaire
par Translators :

1 # Translators: This message informs the user about how many
books he can borrow

230

TRADUIRE LES CHAÎNES DANS NOS VUES ET MODÈLES

2 quota = _("3 livres")

Ainsi, vous signalez aux traducteurs la signification de votre chaîne, pour éviter toute
ambiguïté. Dans le même genre, il se peut qu’apparaisse deux fois la même chaîne,
mais ne signifiant pas la même chose, typiquement les homographes ! Pour résoudre ce
problème, il est possible d’ajouter un marqueur de contexte, permettant de différencier
les deux chaînes, et ainsi générer deux traductions distinctes. Cela nécessite l’import
de la fonction pgettext :

1 from django.utils.translation import pgettext
2
3 sujet = _("tu")
4 verbe = pgettext("verbe", "as")
5 valeur = pgettext("carte de jeu", "as")
6 couleur = _(u"de trèfle")
7 carte = _("%(suj)s %(ver)s : %(val)s %(col)s") % {"suj": sujet ,

"ver": verbe , "val": valeur , "col": couleur}

Cas des modèles

Pour nos modèles, la technique est en réalité la même, sauf qu’il faut utiliser la méthode
ugettext_lazy au lieu de gettext pour la même raison que celle évoquée avec les
vues génériques et la fonction reverse_lazy : nous souhaitons que la traduction soit
effectuée à l’exécution et non à la déclaration des classes, lors de la validation des
modèles par le serveur. La traduction sera alors effectuée seulement quand la chaîne
sera affichée. L’utilisation des fonctions pgettext et ungettext est également similaire
à ce mode de fonctionnement, au détail près qu’il faut les suffixer par _lazy.

De la même façon, nous allons appeler la fonction ugettext_lazy (que nous renommons
en _, pour plus de simplicité comme nous l’avons fait plus haut) et l’appliquer à toutes
nos chaînes de caractères, par exemple ici avec le fichier models.py de notre application
mini_url :

1 #-*- coding: utf -8 -*-
2 from django.db import models
3 import random
4 import string
5 from django.utils.translation import ugettext_lazy as _
6
7 class MiniURL(models.Model):
8 url = models.URLField(verbose_name=_(u"URL à réduire"),

unique=True)
9 code = models.CharField(max_length=6, unique=True)

10 date = models.DateTimeField(auto_now_add=True , verbose_name=_
(u"Date d'enregistrement"))

11 pseudo = models.CharField(max_length=255 , blank=True , null=
True)

12 nb_acces = models.IntegerField(default=0, verbose_name=_(u"
Nombre d'accès à l'URL"))

231

CHAPITRE 20. L’INTERNATIONALISATION

13
14 def __unicode__(self):
15 return u"[{0}] {1}".format(self.code , self.url)
16
17 def save(self , *args , ** kwargs):
18 if self.pk is None:
19 self.generer(6)
20
21 super(MiniURL , self).save(*args , ** kwargs)
22
23 def generer(self , N):
24 caracteres = string.letters + string.digits
25 aleatoire = [random.choice(caracteres) for _ in xrange(N)

]
26
27 self.code = ''.join(aleatoire)
28
29 class Meta:
30 verbose_name = _(u"Mini URL")
31 verbose_name_plural = _(u"Minis URLs")

Traduire les chaînes dans nos templates

La traduction dans les templates repose également sur l’outil gettext. Cependant, dans
nos templates, les tags permettant l’internationalisation ont des noms différents des
fonctions disponibles dans django.utils.translation.

Commençons d’abord par importer les tags nécessaires. Comme pour nos propres tem-
platetags, les tags d’internationalisation sont disponibles après avoir effectué un {%
load i18n %}, au début de chacun de vos templates. Dès que vous souhaitez interna-
tionaliser un template, pensez donc à ajouter tout en haut cette ligne.

Nous allons maintenant voir les deux tags, assez similaires, permettant de faire de la
traduction dans nos templates, à savoir {% trans %} et {% blocktrans %}.

Le tag {% trans %}

Ce tag permet de traduire à la fois une chaîne de caractères constante, mais aussi une
variable :

1 <h2 >{% trans "Contactez -nous !" %}</h2>
2 <p>{% trans ma_variable %}</p>

En interne, ces blocs appellent la fonction ugettext(), introduite précédemment. Vous
pouvez donc imaginer que le fonctionnement est identique à ce que nous avons vu. Dans
le cas d’une variable ({% trans ma_variable %} dans le code précédent), la traduction
sera recherchée à l’exécution de la page, en fonction du contenu même de la variable.

232

TRADUIRE LES CHAÎNES DANS NOS TEMPLATES

Comme pour les chaînes de caractères, si le contenu de cette variable n’est pas présent
dans les traductions, alors son contenu sera affiché tel quel.

Il est également possible de générer la traduction d’une chaîne sans l’afficher. Cela est
utile si vous utilisez plusieurs fois la même chaîne dans un même template :

1 {% trans "Contactez -nous" as titre %}
2 <title >{{ titre }} - {% trans "Blog sur les crêpes bretonnes"

%}</title >
3 <meta name="description" content="{{ titre }}, {% trans "sur

notre magnifique blog de crêpes" %}">

Cela permet aussi de clarifier le code, en réduisant le poids total du template. Enfin,
le tag {% trans %} supporte également le marqueur de contexte, afin de différencier
les homonymes :

1 {% trans "Est" context "Verbe être" %}
2 {% trans "Est" context "Cardinalité" %}

Ici, deux traductions différentes pourront être déclarées, pour différencier les deux
cas, l’un qui concerne la cardinalité et l’autre qui concerne le fameux verbe auxiliaire.
Comme vous pouvez le voir, ce marqueur de contexte est très utile dans le cas des
homographes.

Le tag {% blocktrans %}

Contrairement au tag simple {% trans %}, les blocs {% blocktrans %} {% endblock‌
trans %} permettent d’exécuter des schémas plus complexes de traduction. Par exemple,
il est possible d’incorporer des variables au sein d’un bloc :

1 {% blocktrans %}Vous avez {{ age }} ans.{% endblocktrans %}

Cependant, pour accéder à des expressions (attributs d’un objet, utilisation de filtres. . .),
il faut déclarer ces expressions comme variables locales du bloc de traduction, avec le
mot-clé with :

1 {% blocktrans with nom=user.nom prenom=user.prenom nb_articles=
panier|length %}

2 Vous êtes {{ prenom }} {{ nom }}. Vous avez {{ nb_articles
}} articles dans votre panier.

3 {% endblocktrans %}

À l’image de ungettext, {% blocktrans %} permet également la gestion des pluriels.
Pour ce faire :

– Il faut préciser quel est le nombre qui différencie singulier et pluriel via la syntaxe
count nombre=ma_variable (où nombre et ma_variable sont des variables) ;

– Déclarer deux nouveaux sous-blocs, séparés par le tag {% plural %} : un pour le
cas du singulier et un pour le cas du pluriel. Il est également possible de déclarer une
variable pour préciser le nombre d’articles précis, comme dans l’exemple ci-dessous
avec nb.

233

CHAPITRE 20. L’INTERNATIONALISATION

Un exemple d’utilisation est probablement plus parlant :

1 {% blocktrans count nb=articles|length %}
2 Vous avez 1 article dans votre panier.
3 {% plural %}
4 Vous avez {{ nb }} articles dans votre panier.
5 {% endblocktrans %}

Il est bien entendu possible de combiner ce tag avec le mot-clé with, ce qui donne une
structure encore plus complète :

1 {% blocktrans with total=commande.total count nb=commande.
articles|length %}

2 Vous avez 1 article dans votre panier. Prix total : {{ total
}}

3 {% plural %}
4 Vous avez {{ nb }} articles dans votre panier. Prix total :

{{ total }}
5 {% endblocktrans %}

Enfin, comme pour le bloc {% trans %}, le bloc {% blocktrans %} supporte la gestion
du contexte :

1 {% blocktrans with pseudo=user.username context "lien de parent
é" %}

2 Les fils de {{ pseudo }}
3 {% endblocktrans %}

Aidez les traducteurs en laissant des notes !

Nous avons globalement fait le tour des fonctionnalités de traduction dans les tem-
plates ! En effet, tous les comportements sont gérés automatiquement par les deux tags
que nous venons de voir, en fonction des arguments fournis. Il nous reste juste à voir
comment guider les traducteurs dans leur tâche.

Comme pour la partie concernant les vues et les modèles, il est possible de laisser des
notes aux traducteurs, via des commentaires. Pour ce faire, il faut également commencer
par Translators:, dans un tag {# #} ou {% comment %}, comme ce que nous avons
vu précédemment :

1 {# Translators: Phrase courte , dans un bouton pour la recherche
#}

2 {% trans "Go !" %}
3
4 {% comment %} Translators: Phrase affichée dans le header du

site{% endcomment %}
5 {% blocktrans %} Notre phrase d’accroche géniale !{%

endblocktrans %}

234

SORTEZ VOS DICTIONNAIRES, PLACE À LA TRADUCTION !

Sortez vos dictionnaires, place à la traduction !

Nous avons désormais terminé tout ce qui concerne le développeur, nous allons sortir
du code et des templates quelques instants pour nous attaquer au travail du traducteur.
En effet, nous avons déterminé quelles chaînes doivent être traduites ; maintenant, il
ne reste plus qu’à les traduire.

Génération des fichiers .po

Afin d’attaquer la traduction, il va nous falloir un support où nous pourrons faire la
correspondance entre les chaînes dans notre code et leur traduction. Pour cela, gettext
utilise des fichiers spécifiques, contenant les traductions, dont l’extension est .po (pour
Portable Object File). Voici un extrait d’un des fichiers que nous avons générés :

1 #: .\blog\views.py:77
2 msgid "Bonjour les zéros !"
3 msgstr ""
4
5 #. Translators: Message shown in the logbox , if disconnected
6 #: .\blog\views.py:79
7 #, python -format
8 msgid "Votre IP est %s"
9 msgstr ""

Nous pouvons constater que chaque chaîne traduisible est encapsulée dans un msgid,
suivi d’un msgstr, qui contiendra la chaîne traduite. Voici ce à quoi ressemblera le
fichier avec les traductions :

1 #: .\blog\views.py:77
2 msgid "Bonjour les zéros !"
3 msgstr "Hello newbies !"
4
5 #. Translators: Message shown in the logbox , if disconnected
6 #: .\blog\views.py:79
7 #, python -format
8 msgid "Votre IP est %s"
9 msgstr "Your IP is %s"

Pour permettre la traduction de l’application en plusieurs langues, chaque langue aura
son propre dossier avec ses fichiers .po. Nous allons tout d’abord générer ces fichiers.

Avant de commencer, il va nous falloir créer un dossier locale, qui contiendra l’en-
semble des traductions pour toutes nos langues. Ce dossier peut se situer soit au sein
d’un projet, si nous souhaitons traduire l’ensemble des applications en un seul endroit,
soit dans le dossier d’une application afin de lier chaque application à ses propres
traductions. Nous allons dans notre cas mettre toutes les traductions de toutes les
applications au sein d’un même dossier, à la racine du projet.

235

CHAPITRE 20. L’INTERNATIONALISATION

Les traductions faites au sein des dossiers d’applications sont prioritaires sur
les traductions disponibles dans le dossier du projet.

Il faut ensuite indiquer à Django où se situent les fichiers de traduction pour qu’il
puisse les utiliser. Pour ce faire, indiquez la ligne suivante dans votre settings.py et
adaptez-la au chemin vers le dossier locale que vous venez de créer :

1 LOCALE_PATHS = (
2 '/home/mathx/crepes_bretonnes/locale/',
3)

Si vous avez décidé de mettre les traductions directement dans vos applications, vous
devrez indiquer le dossier des traductions de chaque application dans cette variable.

La création de ces fichiers .po est automatisé par Django : grâce à manage.py, il est
possible de générer les fichiers, via un appel à gettext. Pour créer un dossier dans
locale contenant les traductions en anglais, utilisez la commande suivante, à la racine
de votre projet ou dans une application :

python manage.py makemessages -l en

Après quelques secondes, un dossier locale/en/LC_MESSAGES, contenant comme unique
fichier django.po apparaît. Ce fichier contient des métadonnées ainsi que l’ensemble
des traductions, comme nous avons pu le montrer précédemment.

Si vous ne possédez pas gettext, les fichiers seront très probablement vides !
Veuillez vous référer au début de ce chapitre si cela se produit.

Si jamais vous mettez à jour votre projet et modifiez les chaînes à traduire via le
processus i18n, vous devrez mettre à jour vos fichiers .po en utilisant la commande :

python manage.py makemessages --all

Ainsi, les traductions déjà effectuées resteront intactes, et celles qui doivent être mo-
difiées ou ajoutées seront insérées dans le fichier déjà existant.

Une fois ce fichier généré, le travail de traduction commence : chaque chaîne à traduire
est représentée dans le fichier par une ligne msgid. Chaque msgid est éventuellement
précédé d’informations afin d’aider le traducteur (fichier et ligne à laquelle se situe la
chaîne), mais aussi les commentaires éventuels que vous avez laissés.

Les lignes qui suivent le msgid correspondent à la traduction dans la langue du dossier
(ici l’anglais pour le code en). Dans le cas des traductions courtes, il y a juste un msgstr
à renseigner. Autrement, deux cas se présentent.

Dans le cas de messages plus longs, msgid commence par une chaîne vide "", et continue
à la ligne. Il est important de laisser pour gettext cette chaîne vide. Vous devez agir
de la même façon pour la traduction : les chaînes seront automatiquement concaténées

236

SORTEZ VOS DICTIONNAIRES, PLACE À LA TRADUCTION !

(attention aux espaces entre les mots après concaténation !). Ce cas se présente lorsque
la longueur totale de la ligne dépasse les 80 caractères. Voici un exemple :

1 #: .\ templates\blog\accueil.html.py:4
2 msgid ""
3 "Ici , nous parlons de tout et de rien , mais surtout de rien.

Mais alors , vous "
4 "allez me demandez quel est le but de ce paragraphe ? Je vais

vous répondre "
5 "simplement : il n'en a aucun."
6 msgstr ""
7 "Here , we talk about everything and anything , but mostly

nothing. So, you "
8 "will ask me what is the purpose of this paragraph ... I will

answer "
9 "simply : none , it's useless!"

Le second cas pouvant se présenter est celui des traductions avec la gestion du pluriel.
Si vous regardez notre exemple avec nos fameux chats blancs, le rendu dans le fichier
.po est le suivant :

1 #: .\blog\views.py:80
2 #, python -format
3 msgid "... et selon mes informations , vous avez %(nb)s chat %(

color)s !"
4 msgid_plural ""
5 "... et selon mes informations , vous avez %(nb)s chats %(color)

ss !"
6 msgstr[0] ""
7 msgstr[1] ""

L’entrée msgstr[0] correspond alors au message traduit au singulier, et le second, au
pluriel. Remarquez que, ici encore, msgid_plural est passé à la ligne, puisque la chaîne
est légèrement trop longue (81 caractères sur les 80 maximum !).

Nous en avons déjà terminé avec les fichiers .po, vous savez désormais où répertorier
vos traductions.

Génération des fichiers .mo

Une fois les fichiers .po complétés, il faut les compiler dans un format que gettext
peut comprendre. En effet, afin d’optimiser ses temps de traitement, gettext souhaite
obtenir les fichiers dans un nouveau format, binaire cette fois-ci, les fichiers .mo (pour
Machine Object File). Pour ce faire, il suffit simplement d’entrer la commande suivante,
au même endroit où vous avez effectué makemessages :

python manage.py compilemessages

Une fois cela effectué, un fichier .mo est censé apparaître à côté de chacun de vos fichiers
.po. Django ira chercher automatiquement ces fichiers et en extraira le contenu, avec

237

CHAPITRE 20. L’INTERNATIONALISATION

vos traductions !

Le changement de langue

Nous avons maintenant une application pouvant gérer plusieurs langues, mais l’utili-
sateur ne peut pas forcément choisir celle qu’il souhaite utiliser. Pour ce faire, il existe
trois méthodes permettant de choisir la langue à afficher.

Une première méthode consiste à utiliser la fonction django.utils.translation.acti
vate. Cette fonction s’utilise surtout en dehors des vues et des templates et est plutôt
destinée à la gestion de la langue dans des crons par exemple. Elle permet d’assigner
la langue à utiliser pour le thread actuel :

1 >>> from django.utils import translation
2 >>> from django.utils.translation import ugettext as _
3 >>> translation.activate('en')
4 >>> print _(u"Bonjour les zéros !")
5 Hello newbies!

Une deuxième méthode consisterait à modifier la variable request.session[’django
_language’] dans une vue. Pour indiquer l’anglais comme langue à afficher, il suffit
donc simplement d’indiquer request.session[’django_language’] = ’en’. Néan-
moins, cette méthode interfère dans le processus de détermination de la langue que
Django effectue et il est donc déconseillé d’utiliser cette méthode.

Ce qui nous amène à la troisième méthode qui utilise une vue générique. Il vous faut
tout d’abord ajouter cette directive de routage dans votre urls.py principal :

1 (r'^i18n/', include('django.conf.urls.i18n'))

Cette vue est censée recevoir des arguments provenant d’un formulaire. Pour ce faire,
nous avons établi le template suivant :

1 {% load i18n %}
2 <h1>Changer de langue </h1>
3
4 {% trans "Bonjour les zéros !" %}
5
6 <form action="/i18n/setlang/" method="post">
7 {% csrf_token %}
8 <input name="next" type="hidden" value="/une/url/" />
9

10 <select name="language">
11 {% for lang in LANGUAGES %}
12 <option value="{{ lang.0 }}" >{{ lang.1 }}</option >
13 {% endfor %}
14 </select >
15
16 <input type="submit"/>
17 </form >

238

LE CHANGEMENT DE LANGUE

Rendez ce template accessible depuis une vue classique ou une vue générique et n’ou-
bliez pas de modifier le paramètre next du formulaire qui indique vers quelle URL
l’utilisateur doit être redirigé après avoir validé le formulaire. Si vous n’indiquez pas ce
paramètre, l’utilisateur sera redirigé d’office vers /.

La liste des langues sera affichée dans le formulaire et le choix envoyé à Django après la
soumission du formulaire. Vous verrez dès lors la phrase « Bonjour les zéros ! » traduite
dans la langue que vous avez choisie.

En résumé

– Le processus de traduction se divise en deux parties :
– L’internationalisation, où nous indiquons ce qui est à traduire ;
– La localisation, où nous effectuons la traduction et l’adaptation à la culture.

– Ce processus se base essentiellement sur l’utilisation de l’outil gettext, permettant
la génération de fichiers de traduction utilisables par des novices en développement.

– Django permet également d’adapter l’affichage des dates et des nombres à la langue,
en même temps que leur traduction.

– Grâce aux sessions et aux middlewares, le framework peut deviner la langue de
l’utilisateur automatiquement, en fonction de son navigateur ou de ses précédentes
visites.

239

CHAPITRE 20. L’INTERNATIONALISATION

240

Chapitre 21
Les tests unitaires

Difficulté :

u n test unitaire est une opération qui vérifie une certaine partie de votre code. Cela vous
permet de vérifier certains comportements de fonctions : « est-ce que si nous appelons
cette fonction avec ces arguments, nous obtenons bien ce résultat précis ? », ou de

vérifier toute suite d’appels de vues de votre application en leur fournissant des données
spécifiques. Ces tests pourront être exécutés automatiquement les uns à la suite des autres,
chaque fois que vous le désirerez.

Dans ce chapitre, nous allons donc apprendre à tester des fonctions ou méthodes spécifiques
et des vues entières.

241

CHAPITRE 21. LES TESTS UNITAIRES

Nos premiers tests

Pourquoi faire des tests unitaires ?

Ces tests ont plusieurs avantages. Tout d’abord, à chaque fois que vous modifierez ou
ajouterez quelque chose à votre code, il vous suffira de lancer tous les tests afin de vous
assurer que vous n’avez introduit aucune erreur lors de votre développement. Bien sûr,
vous pourriez faire cela manuellement, mais lorsque que vous avez des dizaines de cas
de figure à tester, la perte de temps devient considérable. Bien entendu, écrire des tests
pour chaque cas prend un peu de temps, mais plus le développement s’intensifie, plus
cela devient rentable. Au final, il y a un gain de temps et de productivité.

De plus, lorsqu’un bug s’introduit dans votre code, si vos tests sont bien conçus, ils vous
indiqueront exactement où il se trouve, ce qui vous permettra de le résoudre encore
plus rapidement.

Finalement, les tests sont considérés comme une preuve de sérieux. Si vous souhaitez
que votre projet devienne un logiciel libre, sachez que de nombreux éventuels contri-
buteurs risquent d’être rebutés si votre projet ne dispose pas de tests.

Cela étant dit, attaquons-nous au sujet.

Reprenons notre modèle Article introduit précédemment dans l’application « blog ».
Nous y avons adjoint une méthode est_recent qui renvoie True si la date de parution
de l’article est comprise dans les 30 derniers jours, sinon elle renvoie False :

1 class Article(models.Model):
2 titre = models.CharField(max_length=100)
3 auteur = models.CharField(max_length=42)
4 contenu = models.TextField ()
5 date = models.DateTimeField(auto_now_add=True , auto_now=

False , verbose_name="Date de parution")
6 categorie = models.ForeignKey(Categorie)
7
8 def est_recent(self):
9 "Retourne True si l'article a été publié dans les 30

derniers jours"
10 from datetime import datetime
11 return (datetime.now()-self.date).days < 30
12
13 def __unicode__(self):
14 return self.titre

Une erreur relativement discrète s’y est glissée : que se passe-t-il si la date de parution
de l’article se situe dans le futur ? L’article ne peut pas être considéré comme récent,
car il n’est pas encore sorti ! Pour détecter une telle anomalie, il nous faut écrire un
test.

242

NOS PREMIERS TESTS

Les tests sont répartis par application. Chaque application possède en effet par défaut
un fichier nommé tests.py dans lequel vous devez insérer vos tests. N’oubliez pas
d’inclure #-*- coding: utf-8 -*- au début du fichier si vous comptez utiliser des
accents dans celui-ci !

Voici notre tests.py, incluant le test pour vérifier si un article du futur est récent ou
non, comme nous l’avons expliqué ci-dessus :

1 #-*- coding: utf -8 -*-
2 """
3 This file demonstrates writing tests using the unittest module.

These will pass
4 when you run "manage.py test".
5
6 Replace this with more appropriate tests for your application.
7 """
8
9 from django.test import TestCase

10
11 from models import Article
12 from datetime import datetime , timedelta
13
14 class ArticleTests(TestCase):
15 def test_est_recent_avec_futur_article(self):
16 """
17 vérifie si la méthode est_recent d'un Article ne
18 renvoie pas True si l'Article a sa date de publication
19 dans le futur.
20 """
21
22 futur_article = Article(date=datetime.now() + timedelta

(days=20))
23 #Il n'y a pas besoin de remplir tous les champs ou de

sauvegarder l'entrée
24 self.assertEqual(futur_article.est_recent (), False)

Les tests d’une même catégorie (vérifiant par exemple toutes les méthodes d’un même
modèle) sont regroupés dans une même classe, héritant de django.test.TestCase.
Nous avons ici notre classe ArticleTests censée regrouper tous les tests concernant
le modèle Article.

Dans cette classe, chaque méthode dont le nom commence par test_ représente un test.
Nous avons ajouté une méthode test_est_recent_avec_futur_article qui vérifie si
un article publié dans le futur est considéré comme récent ou non. Cette fonction crée
un article censé être publié dans 20 jours et vérifie si sa méthode est_recent renvoie
True ou False (pour rappel, elle devrait renvoyer False, mais renvoie pour le moment
True).

La vérification même se fait grâce à une méthode de TestCase nommée assertEqual.
Cette méthode prend deux paramètres et vérifie s’ils sont identiques. Si ce n’est pas le
cas, le test est reporté à Django comme ayant échoué, sinon, rien ne se passe et le test

243

CHAPITRE 21. LES TESTS UNITAIRES

est considéré comme ayant réussi.

Ici, la méthode est_recent doit bien renvoyer False. Comme nous avons introduit
une erreur dans notre modèle, elle est censée renvoyer True pour le moment, et donc
faire échouer le test.

Afin d’exécuter nos tests, il faut utiliser la commande python manage.py test qui
lance tous les tests répertoriés :

python manage.py test
Creating test database for alias ’default ’...
..
==
FAIL: test_est_recent_avec_futur_article (blog.tests.

ArticleTests)
--
Traceback (most recent call last):

File "/home/mathx/crepes_bretonnes/blog/tests.py", line 31, in
test_est_recent_avec_futur_article

self.assertEqual(futur_article.est_recent (), False)
AssertionError: True != False

--
Ran 419 tests in 10.256s

FAILED (failures=1, skipped =1)
Destroying test database for alias ’default ’...

Comme prévu, le test que nous venons de créer a échoué.

419 tests ont été lancés. C’est normal, car les applications par dé-
faut de Django (utilisateurs, sessions, etc.) possèdent elles aussi des
tests qui ont également été exécutés. Si vous souhaitez juste exécu-
ter les tests de l’application « blog », vous pouvez indiquer python
manage.py blog, ou également manage.py test blog.ArticleTests
pour lancer tous les tests de la classe ArticleTests, ou directe-
ment spécifier un seul test comme ceci : python manage.py test
blog.ArticleTests.est_est_recent_avec_futur_article.

Modifions donc la méthode est_recent afin de corriger le bug :

1 def est_recent(self):
2 "Retourne True si l'article a été publié dans les 30

derniers jours"
3 from datetime import datetime
4 return (datetime.now()-self.date).days < 30 and self.

date < datetime.now()

Relançons le test. Comme prévu, celui-ci fonctionne désormais !

244

TESTONS DES VUES

python manage.py test
Creating test database for alias ’default ’...
..
--
Ran 419 tests in 10.165s

OK (skipped =1)
Destroying test database for alias ’default ’...

Petite précision : vous pouvez préparer votre suite de tests en créant une méthode
nommée setUp qui permet d’initialiser certaines variables à l’intérieur de votre classe,
pour les utiliser dans vos tests par la suite :

1 class UnTest(TestCase):
2 def setUp(self):
3 self.une_variable = "Salut !"
4
5 def test_verification(self):
6 self.assertEqual(self.une_variable , "Salut !")

Testons des vues

Outre les tests sur des méthodes, fonctions, etc., qui sont spécifiques, il est également
possible de tester des vues. Cela se fait grâce à un serveur web intégré au système de
test qui sera lancé tout seul lors de la vérification des tests.

Pour tester quelques vues, nous allons utiliser l’application mini_url créée lors du TP
de la deuxième partie. N’hésitez pas à reprendre le code que nous avons donné en
solution si ce n’est pas déjà fait, nous nous baserons sur celui-ci afin de construire nos
tests.

B

�

�
	Télécharger le code

Code web : 185917
Voici le début de notre mini_url/tests.py, incluant notre premier test :

1 #-*- coding: utf -8 -*-
2 from django.test import TestCase
3 from django.core.urlresolvers import reverse
4 from models import MiniURL
5 from views import generer
6
7 def creer_url ():
8 mini = MiniURL(url="http ://foo.bar",code=generer(6), pseudo

=u"Foo foo !")
9 mini.save()

10 return mini
11
12 class MiniURLTests(TestCase):
13 def test_liste(self):

245

http://www.siteduzero.com/codeweb/185917

CHAPITRE 21. LES TESTS UNITAIRES

14 """
15 Vérifie si une URL sauvegardée est bien affichée
16 """
17 mini = creer_url ()
18 reponse = self.client.get(reverse('mini_url.views.liste

'))
19 self.assertEqual(reponse.status_code , 200)
20 self.assertContains(reponse , mini.url)
21 self.assertQuerysetEqual(reponse.context['minis'], [

repr(mini)])

Nous avons créé une petite fonction nommée creer_url qui crée une redirection, l’en-
registre et la retourne, afin de ne pas devoir dupliquer le code dans nos futurs tests.

Django créera à chaque séance de tests une nouvelle base de données vide et utilisera
celle-ci, au lieu d’utiliser la base de données classique, afin d’éviter de compromettre
cette dernière.

Intéressons-nous ensuite au test test_liste qui va s’assurer que lorsque nous créons
une redirection dans la base de données celle-ci est bien affichée par la vue views.liste.
Pour ce faire, nous créons tout d’abord une redirection grâce à la fonction creer_url
et nous demandons ensuite au client intégré au système de test d’accéder à la vue
liste grâce à la méthode get de self.client. Cette méthode prend une URL, c’est
pourquoi nous utilisons la fonction reverse afin d’obtenir l’URL de la vue spécifiée.

get retourne un objet dont les principaux attributs sont status_code, un entier re-
présentant le code HTTP de la réponse, content, une chaîne de caractères contenant
le contenu de la réponse, et context, le dictionnaire de variables passé au template si
un dictionnaire a été utilisé.

Nous pouvons donc vérifier si notre vue s’est bien exécutée en vérifiant le code HTTP
de la réponse : self.assertEqual(reponse.status_code, 200).

Pour rappel, 200 correspond à une requête correctement déroulée, 302 à une redirection,
404 à une page non trouvée et 500 à une erreur côté serveur.

Deuxième vérification : est-ce que l’URL qui vient d’être créée est bien affichée sur
la page ? Cela se fait grâce à la méthode assertContains qui prend comme premier
argument une réponse comme celle donnée par get, et en deuxième argument une
chaîne de caractères. La méthode renvoie une erreur si la chaîne de caractères n’est pas
contenue dans la page.

Dernière et troisième vérification : est-ce que le QuerySet minis contenant toutes les
redirections dans notre vue (celui que nous avons passé à notre template et qui est
accessible depuis reponse.context) est égal au QuerySet indiqué en deuxième pa-
ramètre ? En réalité, le deuxième argument n’est pas un QuerySet, mais est censé
correspondre à la représentation du premier argument grâce à la fonction repr. Au-
trement dit, il faut que repr(premier_argument) == deuxieme_argument. Voici ce
à quoi ressemble le deuxième argument dans notre exemple : [’<MiniURL: [ALSWM0]
http://foo.bar>’].

Dans ce test, nous n’avons demandé qu’une simple page. Mais comment faire si nous

246

TESTONS DES VUES

souhaitons par exemple soumettre un formulaire ? Une telle opération se fait grâce à la
méthode post de self.client, dont voici un exemple à partir de la vue nouveau de
notre application, qui permet d’ajouter une redirection :

1 def test_nouveau_redirection(self):
2 """
3 Vérifie la redirection d'un ajout d'URL
4 """
5 data = {
6 'url':'http ://www.siteduzero.com',
7 'pseudo ':u'Un zéro',
8 }
9 reponse = self.client.post(reverse('mini_url.views.

nouveau '), data)
10 self.assertEqual(reponse.status_code , 302) # Le retour

doit être une redirection
11 self.assertRedirects(reponse , reverse('mini_url.views.

liste'))

La méthode post fonctionne comme get, si ce n’est qu’elle prend un deuxième argu-
ment, à savoir un dictionnaire contenant les informations du formulaire. De plus, nous
avons utilisé ici une nouvelle méthode de vérification : assertRedirects, qui vérifie
que la réponse est bien une redirection vers l’URL passée en paramètre. Autrement dit,
si la requête s’effectue correctement, la vue nouveau doit rediriger l’utilisateur vers la
vue liste.

Sachez que si vous gérez des redirections, vous pouvez forcer Django à suivre la redirec-
tion directement en indiquant follow=True à get ou post, ce qui fait que la réponse
ne contiendra pas la redirection en elle-même, mais la page ciblée par la redirection,
comme le montre l’exemple suivant.

1 def test_nouveau_ajout(self):
2 """
3 Vérifie si après la redirection l'URL ajoutée est bien

dans la liste
4 """
5 data = {
6 'url':'http ://www.crepes -bretonnes.com',
7 'pseudo ':u'Amateur de crêpes',
8 }
9 reponse = self.client.post(reverse('mini_url.views.

nouveau '), data , follow=True)
10 self.assertEqual(reponse.status_code , 200)
11 self.assertContains(reponse , data['url'])

Dernier cas de figure à aborder : imaginons que vous souhaitiez tester une vue pour
laquelle il faut obligatoirement être connecté à partir d’un compte utilisateur, sachez
que vous pouvez vous connecter et vous déconnecter de la façon suivante :

1 c = Client ()
2 c.login(username='utilisateur ', password='mot_de_passe ')

247

CHAPITRE 21. LES TESTS UNITAIRES

3 reponse = c.get('/une/url/')
4 c.logout () # La déconnexion n'est pas obligatoire

En résumé

– Les tests unitaires permettent de s’assurer que vous n’avez introduit aucune erreur
lors de votre développement, et assurent la robustesse de votre application au fil du
temps.

– Les tests sont présentés comme une suite de fonctions à exécuter, testant plusieurs
assertions. En cas d’échec d’une seule assertion, il est nécessaire de vérifier son code
(ou le code du test), qui renvoie un comportement anormal.

– Les tests sont réalisés sur une base de données différente de celles de développement ;
il n’y a donc aucun souci de corruption de données lors de leur lancement.

– Il est possible de tester le bon fonctionnement des modèles, mais aussi des vues.
Ainsi, nous pouvons vérifier si une vue déclenche bien une redirection, une erreur,
ou si l’enregistrement d’un objet a bien lieu.

248

Chapitre 22
Ouverture vers de nouveaux horizons :
django.contrib

Difficulté :

U ne des forces de Python est sa philosophie « batteries included » (littéralement
« piles incluses ».) : la bibliothèque standard couvre un nombre d’utilisations très
large, et permet d’intégrer énormément de fonctionnalités, sans qu’on doive les co-

der entièrement une à une. Django suit également cette philosophie, en incluant dans le
framework un nombre de modules complémentaires très important.

Nous arrivons à la fin de ce cours, nous vous proposons donc de parcourir rapidement la
liste de ces modules, afin de découvrir d’éventuels modules qui pourraient vous intéresser.

249

CHAPITRE 22. OUVERTURE VERS DE NOUVEAUX HORIZONS :
DJANGO.CONTRIB

Vers l’infini et au-delà

L’ensemble des fonctionnalités supplémentaires de Django est situé dans le module
django.contrib. Chaque sous-module est un module à part permettant d’intégrer
une nouvelle fonctionnalité. Ces fonctionnalités sont le plus souvent indépendantes,
malgré quelques exceptions.

L’unique caractéristique commune de toutes ces fonctionnalités est qu’elles ne sont pas
essentielles au bon déroulement global de Django. Nous avons déjà présenté quelques-
unes des fonctionnalités présentes dans django.contrib. En effet, l’administration ou
encore le système utilisateurs font partie de django.contrib.

Nous avons adjoint dans le tableau 22.1 une liste reprenant tous les modules compris
dans django.contrib. Nous ne pouvons que vous conseiller de la regarder. Vous dé-
couvrirez peut-être de nouveaux modules qui pourraient vous être utiles, au lieu de
devoir les réécrire vous-mêmes !

Nous allons clore cette partie par la présentation dans ce chapitre de deux fonction-
nalités que nous avons jugées utiles et rapides à présenter : flatpages et humanize.
Tous les autres modules sont très bien documentés dans la documentation officielle de
Django.

Dynamisons nos pages statiques avec flatpages !

Sur la quasi-totalité des sites web, il existe des pages statiques dont le contenu doit
parfois être modifié. Nous pouvons citer comme exemples les pages avec des informa-
tions de contact, de conditions générales d’utilisation, des foires aux questions, etc. Il
peut être lourd de passer par des TemplateView pour ce genre de cas simple, puisque
cela implique de devoir retourner dans le code ou le template à chaque modification du
contenu.

Django propose le module flatpage pour contourner ce problème. Une flatpage est
un objet caractérisé par une URL, un titre et un contenu. Tout cela sera inclus dans
un template générique, ou bien dans un template que vous aurez adapté. Ces informa-
tions sont enregistrées dans la base de données et sont éditables à tout moment par
l’administration.

Installation du module

Pour utiliser le module flatpages, il faut l’activer grâce à ces quelques étapes :

Dans votre fichier settings.py :

– Ajoutez les lignes ’django.contrib.sites’ et ’django.contrib.flatpages’ dans
la liste INSTALLED_APPS, si elles ne sont pas déjà présentes.

– Vérifiez que votre settings.py contient bien une variable SITE_ID. Nous n’en avons
encore jamais parlé dans ce cours, mais Django permet d’héberger plusieurs sites sur

250

DYNAMISONS NOS PAGES STATIQUES AVEC FLATPAGES !

Nom du mo-
dule

Description Traité dans ce cours

admin Système d’administration Partie II, chapitre 4
admindocs Auto-documentation de l’administra-

tion
Non traité

auth Système utilisateurs Partie IV, chapitre 1
comments Application de gestion de commen-

taires. Très utile dans le cas d’un blog,
d’un système de news. . .

Non traité

contenttypes Permet d’obtenir la représentation de
n’importe quel modèle

Partie III, chapitre 2

flatpages Permet de gérer des pages HTML sta-
tiques au sein même de la base de don-
nées

Partie IV, chapitre 7

formtools Ensemble d’outils pour compléter les
formulaires (par exemple la prévisuali-
sation avant envoi)

Non traité

gis Bibliothèque complète qui apporte le
support de SIG (systèmes d’informa-
tion géographique), pour stocker des
données géographiques et les exploiter.
Voir sur http://www.geodjango.org
pour plus d’informations

Non traité

humanize Ensemble de filtres pour les templates,
afin de rendre certaines données plus
« naturelles », notamment pour les
nombres et les dates

Partie IV, chapitre 7

messages Gestion de notifications qui peuvent
être affichées au visiteur

Partie IV, chapitre 2

redirects Gestion des redirections au sein du pro-
jet via une base de données. Utile si
vous changez le schéma de vos URL

Non traité

sessions Gestion des sessions Non traité
sitemaps Génération de sitemaps XML Non traité
sites Permet la gestion de différents sites web

avec la même base de données et la
même installation de Django

Partie IV, chapitre 7

staticfiles Gestion de fichiers statiques dans les
templates

Partie II, chapitre 2

syndication Génération de flux RSS et Atom Non traité
webdesign Intègre un outil de génération de Lo-

rem ipsum via un unique tag : {% lo‌
rem [nb] [methode] [random] %}

La description dans
ce tableau présente
presque tout le mo-
dule !

Table 22.1 – modules compris dans django.contrib

251

CHAPITRE 22. OUVERTURE VERS DE NOUVEAUX HORIZONS :
DJANGO.CONTRIB

une même base de données via cette variable. Habituellement, cette valeur est mise
à 1, mais si vous développez plusieurs sites, cette valeur peut changer !

– Lancez maintenant la commande python manage.py syncdb, pour créer les deux
tables nécessaires.

Pour la suite, deux méthodes s’offrent à vous : vous pouvez soit spécifier clairement
comment accéder à ces pages, soit activer un middleware, qui en cas d’erreur 404 (page
non trouvée) vérifie si une flatpage correspond à l’URL saisie par l’utilisateur.

Le cas des URL explicites

Pour cette méthode, deux possibilités sont envisageables. Vous devrez placer le code
suivant dans le fichier urls.py principal du projet.

Précisez un chemin précis vers les flatpages : dans cet exemple, toutes les URL de
nos pages statiques commenceront par /pages/ :

1 urlpatterns = patterns('',
2 ('^pages/', include('django.contrib.flatpages.urls')),
3)

. . . ou créez un pattern qui attrape toutes les URL qui n’ont pas de vues associées et
tentez de trouver une flatpage qui corresponde (ce qui est équivalent au middleware).
Dans ce cas, le pattern doit être ajouté en toute fin du fichier urls.py !

1 urlpatterns += patterns('django.contrib.flatpages.views ',
2 (r'^(?P<url >.*)$', 'flatpage '),
3)

Utilisation du middleware FlatpageFallbackMiddleware

La seconde méthode laisse FlatpageFallbackMiddleware tout gérer. Une fois activé
et dès qu’une erreur 404 est levée, le middleware vérifie dans la base de données si une
page correspond à l’URL qui est demandée. Dans le cas où plusieurs sites sont activés,
il vérifie également que la page demandée correspond bien au site web actuel. Si une
page est trouvée, alors il l’affiche, sinon il laisse l’erreur 404 se poursuivre.

Lors de l’utilisation du middleware, le comportement des autres middlewares peut ne
pas être pris en compte, notamment ceux utilisant la méthode process_view() : le
middleware est exécuté après la résolution de l’URL et après que l’erreur 404 s’est
propagée, ce qui empêche ce type de middleware de s’exécuter. De plus, pour des
raisons de fonctionnement, nous plaçons usuellement le middleware FlatpageFallback
en dernier. Veillez donc à vérifier le comportement de vos middlewares avant d’utiliser
cette méthode.

Enfin, vérifiez que vos middlewares laissent bien l’erreur 404 arriver jusqu’au middle-
ware de flatpage. Si un autre middleware traite l’erreur et renvoie une exception, la
réponse HTTP obtient le code 500 et notre nouveau middleware ne tentera même pas
de chercher si une page existe.

252

DYNAMISONS NOS PAGES STATIQUES AVEC FLATPAGES !

L’installation du middleware semble plus simple au premier abord, mais nécessite de
faire attention à de nombreux petits pièges. Si vous souhaitez l’utiliser, vous pouvez le
faire en ajoutant ’django.contrib.flatpages.middleware.FlatpageFallbackMidd
leware’ à votre MIDDLEWARE_CLASSES.

Quelle que soit la méthode choisie, la suite de ce cours ne change pas.

Gestion et affichage des pages

Maintenant que le module est installé et les tables créées, une nouvelle catégorie est
apparue dans votre panneau d’administration : il s’agit du module flatpages, qui
contient comme seul lien la gestion des pages statiques, comme le montre la figure
22.1.

Figure 22.1 – Le module « flatpages » dans l’administration de Django

Il n’est pas nécessaire de disserter plus longtemps sur cette partie : l’administration
des pages statiques se fait comme tout autre objet, est assez intuitive et est plutôt bien
documentée en cas de souci.

Pour la suite, nous avons créé une page de contact, avec comme URL /contact/,
un titre et un peu de contenu. Vous pouvez vous aussi créer vos propres pages, pour
prendre en main l’administration de ce module.

Il nous reste un seul point à traiter avant de pouvoir utiliser nos flatpages : les
templates. Pour le moment, nous n’avons assigné aucun template à ces pages. Par
défaut, chaque page sera traitée avec le template flatpages/default.html de votre
projet. Nous allons donc tout d’abord le créer :

1 <!DOCTYPE html >

253

CHAPITRE 22. OUVERTURE VERS DE NOUVEAUX HORIZONS :
DJANGO.CONTRIB

2 <html >
3 <head >
4 <title >{{ flatpage.title }}</title >
5 </head >
6 <body >
7 <h1 >{{ flatpage.title }}</h1 >
8 {{ flatpage.content }}
9 </body >

10 </html >

Une fois ce template enregistré, nous pouvons tester le module : vous pouvez à présent
accéder à la page (voir figure 22.2).

Figure 22.2 – Exemple de page de contact utilisant « Flatpages »

Comme vous pouvez le voir, le champ contenu accepte également du HTML, pour
mettre en forme votre page.

Enfin, plusieurs options avancées, que nous ne détaillerons pas ici, existent afin :

– D’autoriser les commentaires sur une page (via le module django.contrib.comments) ;
– De n’autoriser que les utilisateurs connectés à voir la page (via le module django.contr
ib.auth) ;

– D’utiliser un template différent de flatpages/default.html.

Lister les pages statiques disponibles

Pour terminer ce sous-chapitre, nous allons voir comment lister toutes les pages sta-
tiques disponibles via flatpages. Le module fournit plusieurs tags afin de récupérer ces
listes. Vous devez donc tout d’abord charger la bibliothèque, via {% load flatpages
%}. Après, vous pouvez lister l’ensemble des pages visibles par tous, comme ceci :

1 {% load flatpages %}
2 {% get_flatpages as flatpages %}

254

RENDONS NOS DONNÉES PLUS LISIBLES AVEC HUMANIZE

3
4 {% for page in flatpages %}
5 {{ page.title }}
6 {% endfor %}
7

Pour afficher celles également disponibles uniquement pour les personnes connectées,
il faut spécifier l’utilisateur en cours, grâce au mot-clé for :

1 {% get_flatpages for user as flatpages %}

Si la variable user correspond à un utilisateur non connecté, ce tag aura le même
effet que le premier, c’est-à-dire {% get_flatpages as flatpages %}. Enfin, il est
possible de lister les flatpages commençant par une certaine URL uniquement, via
un argument optionnel, avant les mots-clés for et as :

1 {% get_flatpages '/contact/' as contact_pages %}
2 {% get_flatpages prefixe_contact as contact_pages %}
3 {% get_flatpages '/contact/' for request.user as contact_pages

%}

Rendons nos données plus lisibles avec humanize

Le module django.contrib.humanize fournit un ensemble de filtres permettant d’ajou-
ter, selon les développeurs du framework, « une touche humaine aux données ». Nous
allons voir les différents cas où les filtres du module humanize rendent la lecture d’une
donnée plus agréable à l’utilisateur. L’avantage de ce module est qu’il prend mieux
en charge la localisation : la transformation des données s’adapte à la langue de votre
projet !

Avant de commencer, ajoutez la ligne ’django.contrib.humanize’ à votre variable
INSTALLED_APPS dans le fichier settings.py. Pour intégrer les filtres présentés par la
suite, il faut charger les templatetags du module, via la commande {% load humanize
%}.

apnumber

Pour les nombres de 1 à 9, ce filtre va les traduire automatiquement en toutes lettres.
Dans les autres cas (nombres supérieurs ou égaux à 10), ils seront affichés en chiffres.
Cette convention suit le style de l’agence Associated Press.

Exemples (avec la langue du projet en français) :

1 {{ 1|apnumber }} renvoie "un"

2 {{ "2"|apnumber }} renvoie "deux"

3 {{ 10|apnumber }} renvoie 10.

Le filtre prend à la fois des entiers et des chaînes de caractères en paramètre.

255

CHAPITRE 22. OUVERTURE VERS DE NOUVEAUX HORIZONS :
DJANGO.CONTRIB

intcomma

Ajoute des séparateurs de milliers, afin de simplifier la lecture. En réalité, le filtre prend
en charge la localisation spécifiée dans le fichier settings.py, et le séparateur dépend
donc de la langue courante : le séparateur sera la virgule si la langue courante est
l’anglais par exemple.

Exemples (encore une fois en français puisque le séparateur est l’espace) :

1 {{ 300|intcomma }} renvoie 300

2 {{ "9000"|intcomma }} renvoie 9 000

3 {{ 90000|intcomma }} renvoie 90 000

4 {{ 9000000|intcomma }} renvoie 9 000 000

Le filtre prend à la fois des entiers et des chaînes de caractères en paramètre.

intword

Ce filtre permet de convertir les grands entiers en leur représentation textuelle, de
préférence avec des nombres supérieurs à un million. Ce filtre respecte également la
localisation pour le séparateur décimal.

1 {# Quelques cas classiques #}
2 {{ 1000000|intword }} renvoie 1,0 million.

3 {{ "4525640"|intword }} renvoie 4,5 millions.

4 {{ 20000000|intword }} renvoie 20,0 millions.

5 {{ 999999999|intword }} renvoie 1000 ,0 millions.

6 {{ 5500000000|intword }} renvoie 5,5 milliards.

7
8 {# Et des cas plus extrêmes. Oui , il y a bien 101 zéros sur le

dernier exemple #}
9 {{ 1000000000000000000|intword }} renvoie 1,0 quintillion.

10 {{ 900
11 000|intword }}

renvoie 90,0 gogols.

12
13 {# Ce filtre ne supporte pas les « petits nombres » #}
14 {{ 90000|intword }} renvoie 90000.

Le filtre prend à la fois des entiers et des chaînes de caractères en paramètre.

naturalday

Retourne « aujourd’hui », « hier » ou « demain » si la date est appropriée. Dans les
autres cas, la date sera affichée selon le format fourni en paramètre.

Par exemple, si la date actuelle est le 4 mars 2130 :

Portion de notre vue :

256

RENDONS NOS DONNÉES PLUS LISIBLES AVEC HUMANIZE

1 date_avant_hier = datetime(2130 , 3, 2)
2 date_hier = datetime(2130 , 3, 3)
3 date_auj = datetime(2130 , 3, 4)
4 date_demain = datetime(2130 , 3, 5)

Template associé :
1 {{ date_avant_hier|naturalday:"DATE_FORMAT" }} renvoie "2 mars

2130"

2 {{ date_avant_hier|naturalday:"d/m/Y" }} renvoie "02/03/2130"<

br />
3 {{ date_hier|naturalday:"d/m/Y" }} renvoie "hier"

4 {{ date_auj|naturalday:"d/m/Y" }} renvoie "aujourd 'hui"

5 {{ date_demain|naturalday:"d/m/Y" }} renvoie "demain"

naturaltime

Retourne une chaîne de caractères précisant le nombre de secondes, minutes ou heures
écoulées depuis la date (ou restantes dans le cas d’une date future) :

Exemple, en admettant que nous sommes le 4 mars 2130, à 14 :20 :00 :

Portion de notre vue :
1 date1 = datetime(2130 , 3, 4, 14, 20 , 0)
2 date2 = datetime(2130 , 3, 4, 14, 19 , 30)
3 date3 = datetime(2130 , 3, 4, 13, 15 , 25)
4 date4 = datetime(2130 , 3, 4, 12, 20 , 0)
5 date5 = datetime(2130 , 3, 3, 13, 10 , 0)
6 date6 = datetime(2130 , 3, 5, 18, 20 , 0)

1 {{ date1|naturaltime }} renvoie "maintenant"

2 {{ date2|naturaltime }} renvoie "il y a 29 secondes"

3 {{ date3|naturaltime }} renvoie "il y a une heure"

4 {{ date4|naturaltime }} renvoie "il y a une heure"

5 {{ date5|naturaltime }} renvoie "il y a 1 jour , 1 heure"

6 {{ date6|naturaltime }} renvoie "dans 1 jour , 4 heures"

ordinal

Convertit un entier en chaîne de caractères représentant une place dans un classement.

Exemple, encore une fois en français :
1 {{ 1|ordinal }} renvoie 1<sup >er </sup >

2 {{ "2"|ordinal }} renvoie 2<sup >e</sup >

3 {{ 98|ordinal }} renvoie 98 <sup >e</sup >

Le filtre prend à la fois des entiers et des chaînes de caractères en paramètre.

Nous avons fini le tour du module humanize ! Celui-ci contient au total six filtres vous
facilitant le travail pour certaines opérations esthétiques dans vos templates.

257

CHAPITRE 22. OUVERTURE VERS DE NOUVEAUX HORIZONS :
DJANGO.CONTRIB

En résumé

– Django est un framework très puissant, il propose de nombreux modules complémen-
taires et optionnels pour simplifier le développement.

– Ce cours a traité de quelques-uns de ces modules, mais il est impossible de les pré-
senter tous : la documentation présente de façon complète chacun d’entre eux.

– Il existe des centaines de modules non officiels permettant de compléter votre instal-
lation et d’intégrer de nouvelles fonctionnalités.

– Nous avons présenté ici humanize, qui rend vos données plus naturelles dans vos
templates, et flatpages qui permet de gérer vos pages statiques via l’administration.

258

Cinquième partie

Annexes

259

Chapitre 23
Déployer votre application en
production

Difficulté :

T out au long du cours, nous avons utilisé le serveur de développement de Django.
Cependant, ce serveur de développement n’est adapté que pour le développement, et
pas du tout pour la mise en production dans une situation réelle.

Nous allons voir dans ce chapitre comment déployer un projet Django en production sur un
serveur dédié Linux. Si vous ne disposez pas de serveur dédié, sachez qu’il existe certains
hébergeurs qui proposent également l’installation et la gestion d’un projet Django, nous en
avons listé quelques-uns à la fin de ce chapitre.

261

CHAPITRE 23. DÉPLOYER VOTRE APPLICATION EN PRODUCTION

Le déploiement

Contrairement à ce que certains peuvent penser, le serveur de développement ne peut
pas être utilisé en production. En effet, celui-ci n’apporte pas les conditions de sécurité
et de performances suffisantes pour garantir un service stable. Le rôle d’un framework
n’est pas de distribuer les pages web, c’est au serveur web qu’incombe ce travail.

Nous allons voir comment installer notre projet sur un serveur Apache 2 avec le
mod_wsgi 1 (cependant, tout autre serveur web avec le protocole WSGI peut faire
l’affaire aussi) sur un serveur Linux dont vous devez avoir un accès root. Le protocole
WSGI est une sorte de couche qui permet à un serveur web et une application web
Python de communiquer ensemble.

Sachez que vous pouvez également déployer un projet Django sur certains hébergements
mutualisés le supportant. Généralement, une documentation de l’hébergeur sera mise
à votre disposition pour vous indiquer comment le déployer sur leur infrastructure. Si
vous souhaitez déployer Django sur votre propre serveur, ce chapitre vous expliquera
tout ce que vous devrez savoir.

Par défaut, Django fournit un fichier wsgi.py qui s’occupera de cette liaison. Pour
rappel :

1 crepes_bretonnes/
2 manage.py
3 crepes_bretonnes/
4 __init__.py
5 settings.py
6 urls.py
7 wsgi.py

Ce fichier n’a pas besoin d’être modifié. Il est normalement correctement généré selon
les paramètres de votre projet.

Il faut savoir qu’un projet Django ne se déploie pas comme un projet PHP. En effet, si
nous tentons d’héberger le projet sur un serveur Apache avec une configuration basique,
vous aurez un résultat similaire à la figure 23.1.

Non seulement votre code n’est pas exécuté, mais il est lisible par tous. Il faut donc
spécifier à Apache d’utiliser le protocole WSGI pour que Django puisse exécuter le
code et renvoyer du HTML.

Dans un premier temps il va falloir installer le module WSGI. Sous la plupart des
distributions Linux, un paquet existe pour nous simplifier la vie. Par exemple, pour
Debian :

aptitude install libapache2 -mod -wsgi

N’oubliez cependant pas, si vous n’avez pas Django ou Apache2 d’installé, de les ins-
taller également ! Nous ne couvrirons pas l’installation d’Apache2, ni sa configuration

1. Module Web Server Gateway Interface

262

LE DÉPLOIEMENT

Figure 23.1 – Une liste de fichiers Python que nous ne pouvons que télécharger

basique. Sachez bien évidemment que vous pouvez utiliser d’autres serveurs HTTP :
nginx, lighttpd, etc.

Ensuite, modifions le fichier /etc/apache2/httpd.conf pour indiquer où trouver notre
application. Si ce fichier n’existe pas, créez-le. Voici la configuration à insérer :

1 WSGIScriptAlias / /chemin/vers/crepes_bretonnes/
crepes_bretonnes/wsgi.py

2 WSGIPythonPath /chemin/vers/crepes_bretonnes/
3 <Directory /chemin/vers/crepes_bretonnes/>
4 <Files wsgi.py >
5 Order deny ,allow
6 Allow from all
7 </Files >
8 </Directory >

– La première ligne, WSGIScriptAlias, indique que toutes les URLs commençant par
« / » (qui indique la racine du serveur) devront utiliser l’application définie par le
second argument, qui est ici le chemin vers notre fichier wsgi.py.

– La deuxième ligne, WSGIPythonPath, permet de rendre accessible votre projet via
la commande import en Python. Ainsi, le module wsgi pourra lancer notre projet
Django.

– Enfin, la directive <Directory ...> permet de s’assurer que le serveur Apache peut
accéder au fichier wsgi.py uniquement.

Sauvegardez ce fichier. Si vous souhaitez changer des informations sur le nom de do-
maine ou le port, il faudra passer par les VirtualHosts d’Apache (ce que nous ne
couvrirons pas ici).

263

CHAPITRE 23. DÉPLOYER VOTRE APPLICATION EN PRODUCTION

Nous allons pouvoir modifier les paramètres de notre projet (settings.py). Dans un
premier temps, à la création de notre projet, nous avions défini quelques variables : base
de données, chemin d’accès, etc. Il va falloir les adapter à notre serveur de production.

Voici les variables à modifier :

– Passer la variable DEBUG à False pour indiquer que le site est désormais en produc-
tion. Il est très important de le faire, sans quoi les erreurs et des données sensibles
seront affichées !

– Remplir la variable ALLOWED_HOSTS qui doit contenir les différentes adresses depuis
lesquelles le site peut être accédé. Exemple : ALLOWED_HOSTS = [’www.crepes-bret
onnes.com’, ’.super-crepes.fr’]. Le point au début du deuxième élément de la
liste permet d’indiquer que tous les sous-domaines sont acceptés, autrement dit, les
domaines suivants seront accessibles : super-crepes.fr, www.super-crepes.fr, hum.super-
crepes.fr, media.super-crepes.fr, etc.

– Adaptez la connexion à la base de données en fonction de ce que vous souhaitez
utiliser en production. Nous vous conseillons d’utiliser MySQL ou PostgreSQL en
production. N’oubliez pas d’installer les extensions nécessaires si vous souhaitez uti-
liser autre chose que SQLite.

– Adaptez le chemin vers le dossier templates/ et les divers autres dossiers possibles.

Sauvegardez et relancez Apache (service apache2 reload). Votre site doit normale-
ment être accessible !

Si vous obtenez une erreur Internal Server Error, pas de panique, c’est
sûrement dû à une erreur dans votre configuration. Pour traquer l’erreur,
faites un tail -f /var/log/apache2/error.log et regardez l’exception
lancée lors du chargement d’une page.

Gardez un œil sur le projet

Une application n’est jamais parfaite, et des erreurs peuvent tout le temps faire surface,
même après la mise en production malheureusement. Cependant, lorsqu’une erreur
survient en production, un problème apparaît : comment être au courant de l’erreur
rencontrée et dans quelles circonstances s’est-elle produite ? Une solution serait de
vérifier régulièrement les journaux d’erreur de votre serveur web, mais si une erreur
critique apparaît, vous seriez le dernier prévenu. Vous n’aurez pas non plus le contexte
de l’erreur. Pour résoudre ce fâcheux problème, Django propose une solution simple :
il vous enverra un e-mail à chaque erreur rencontrée avec le contexte de celle-ci !

Cet e-mail contient plusieurs types d’informations : le traceback complet de l’erreur
Python, les données HTTP de la requête et d’autres variables bien pratiques (informa-
tions sur la requête HTTP, état de la couche WSGI, etc.). Ces dernières ne sont pas
affichées dans l’image (elles viennent après, dans l’e-mail).

264

GARDEZ UN ŒIL SUR LE PROJET

Activer l’envoi d’e-mails

Dans un premier temps, assurez-vous qu’un serveur d’e-mails est installé sur votre
machine, permettant d’envoyer des e-mails via le protocole SMTP. Pour pouvoir rece-
voir ces alertes, assurez-vous que votre variable DEBUG est à False. Les e-mails ne
sont envoyés que dans ce cas-là. En effet, en production, les exceptions sont affichées
directement dans le navigateur lorsque l’erreur est lancée.

Ensuite, assurez-vous également que la variable ADMINS de votre settings.py est cor-
recte et à jour. En effet, ce sont les administrateurs présents dans cette liste qui rece-
vront les e-mails d’erreurs. Pour rappel, lors de la création de notre projet, nous avions
mis ceci :

1 ADMINS = (
2 ('Maxime Lorant ', 'maxime@crepes -bretonnes.com'),
3 ('Mathieu Xhonneux ', 'mathieu@crepes -bretonnes.com'),
4)

Ici, les e-mails d’erreurs sont envoyés aux deux personnes, en même temps.

Par défaut, Django envoie les e-mails depuis l’adresse root@localhost. Ce-
pendant, certaines boîtes e-mail rejettent cette adresse, ou tout simplement
vous souhaiteriez avoir quelque chose de plus propre. Dans ce cas, vous pou-
vez personnaliser l’adresse en ajoutant une variable dans votre settings.py :
SERVER_EMAIL = ’adresse@domain.com’.

Quelques options utiles. . .

Être avertis des pages 404

Par défaut, les pages non trouvées ne sont pas signalées par e-mail. Si vous voulez
toutefois les recevoir, ajoutez les lignes suivantes dans votre settings.py :

1 SEND_BROKEN_LINK_EMAILS = True
2 MANAGERS = ADMINS # À ajouter après ADMINS

Assurez-vous par la même occasion que CommonMiddleware est dans votre MIDDLE‌
WARE_CLASSES (ce qui est le cas par défaut). Si c’est le cas, Django enverra un e-mail
à toutes les personnes dans MANAGERS (ici, les administrateurs en fait) lorsque le code
d’erreur 404 sera déclenché par quelqu’un. Il est également possible de filtrer ces envois,
via la configuration de IGNORABLE_404_URLS.

1 import re
2 IGNORABLE_404_URLS = (
3 re.compile(r'\.(php|cgi)$'),
4 re.compile(r'^/ phpmyadmin/'),
5 re.compile(r'^/apple -touch -icon .*\. png$'),
6 re.compile(r'^/ favicon \.ico$'),

265

CHAPITRE 23. DÉPLOYER VOTRE APPLICATION EN PRODUCTION

7 re.compile(r'^/ robots \.txt$'),
8)

Ici, les fichiers *.php, le dossier phpmyadmin/, etc. ne seront pas concernés.

Filtrer les données sensibles

Enfin, il peut arriver qu’une erreur de votre code survienne lors de la saisie de données
sensibles : saisie d’un mot de passe, d’un numéro de carte bleue, etc. Pour des raisons
de sécurité, il est nécessaire de cacher ces informations dans les e-mails d’erreurs ! Pour
ce faire, nous devons déclarer au-dessus de chaque vue contenant des informations
critiques quelles sont les variables à cacher :

1 from django.views.decorators.debug import sensitive_variables
2 from django.views.decorators.debug import

sensitive_post_parameters
3
4 @sensitive_variables('user', 'password ', 'carte')
5 def paiement(user):
6 user = get_object_or_404(User , id=user)
7 password = user.password
8 carte = user.carte_credit
9

10 raise Exception
11
12 @sensitive_post_parameters('password ')
13 def connexion(request):
14 raise Exception

Ne surtout pas laisser ces informations, même si vous êtes le seul à avoir ces
e-mails et que vous vous sentez confiant. L’accès au mot de passe en clair
est très mal vu pour le bien des utilisateurs et personne n’est jamais à l’abri
d’une fuite (vol de compte e-mail, écoute de paquets. . .).

Hébergeurs supportant Django

Nous avons vu comment installer un projet Django sur un serveur dédié. Cependant,
tout le monde n’a pas la chance d’avoir un serveur à soi. Il existe toutefois d’autres
possibilités. De plus en plus d’hébergeurs proposent désormais le support de langages
et outils autres que le PHP : Java/J2EE, Ruby On Rails, et bien sûr Django !

Vous trouverez dans le tableau suivant la liste des hébergeurs notables.

Une liste plus exhaustive est disponible sur le site officiel (en anglais). Comme vous
pouvez le voir, la majorité de ces hébergeurs sont payants.

266

HÉBERGEURS SUPPORTANT DJANGO

Nom Caractéristiques Offre
Alwaysdata Large panel, dont une offre gratuite. Le sup-

port est très réactif, leur site est même codé
avec Django !

Gratuit et Payant

Heroku Un hébergeur devenu très à la mode. Très
flexible et puissant, il permet de réaliser énor-
mément d’opérations différentes et gère par-
faitement Django.

Gratuit et Payant

WebFaction Site international (serveurs à Amsterdam pour
l’Europe), propose le support de Django sans
frais supplémentaires. Les quotas sont très
flexibles.

Payant

DjangoEurope Comme son nom l’indique, DjangoEurope
est spécialisé dans l’hébergement de projets
Django. Il fournit donc une interface adaptée
à la mise en production de votre projet.

Payant

DjangoFoo
Hosting

Support de plusieurs versions de Django, accès
rapide à la gestion de projet, via le manage.py,
redémarrage automatique de serveurs. . . Une
vraie mine d’or d’après les utilisateurs !

Payant

B

�

�
	Liste d’hébergeurs

Code web : 833094

En résumé

– Il ne faut pas utiliser le serveur python manage.py runserver en production.
– Une des méthodes d’installation possible passe par Apache2 avec le mod_wsgi, en

exécutant le script wsgi.py contenu dans le répertoire du projet.
– Si l’on désactive le mode DEBUG, Django enverra un e-mail à toutes les personnes

listées dans le tuple ADMINS en cas d’erreur 500 sur le site. Il est possible d’être
averti en cas d’erreurs 404, et de filtrer les données sensibles envoyées (telles que les
mots de passe).

267

http://www.siteduzero.com/codeweb/833094

CHAPITRE 23. DÉPLOYER VOTRE APPLICATION EN PRODUCTION

268

Chapitre 24
L’utilitaire manage.py

Difficulté :

T out au long de ce cours, vous avez utilisé la commande manage.py fournie par
Django pour différents besoins : créer un projet, créer une application, mettre à jour
la structure de la base de données, ajouter un super-utilisateur, enregistrer et compiler

des traductions, etc. Pour chaque tâche différente, manage.py possède une commande
adaptée. Bien évidemment, nous n’avons vu qu’une fraction des possibilités offertes par
cet outil. Dans ce chapitre, nous aborderons toutes les commandes une par une, avec leurs
options, qu’elles aient déjà été introduites auparavant ou non.

N’hésitez pas à survoler cette liste, vous découvrirez peut-être une commande qui pourrait
vous être utile à un moment donné, et vous n’aurez qu’à revenir dans ce chapitre pour
découvrir comment elle marche exactement.

269

CHAPITRE 24. L’UTILITAIRE MANAGE.PY

Les commandes de base

Prérequis

La plupart des commandes acceptent des arguments. Leur utilisation est propre à
chaque commande et est indiquée dans le titre de celle-ci. Un argument entre chevrons
< ... > indique qu’il est obligatiore, tandis qu’un argument entre crochets [...]
indique qu’il est optionnel. Référez-vous ensuite à l’explication de la commande pour
déterminer comment ces arguments sont utilisés.

Certaines commandes possèdent également des options pour modifier leur fonctionne-
ment. Celles-ci commencent généralement toutes par deux tirets « -- » et s’ajoutent
avant ou après les arguments de la commande, s’il y en a. Les options de chaque com-
mande seront présentées après l’explication du fonctionnement global de la commande.

Les commandes seront introduites par thème : nous commencerons par les outils de base
dont la plupart ont déjà été expliqués, puis nous expliquerons toutes les commandes
liées à la gestion de la base de données, et nous finirons par les commandes spécifiques
à certains modules introduits auparavant, comme le système utilisateurs.

Liste des commandes

runserver [port ou adresse:port]

Lance un serveur de développement local pour le projet en cours. Par défaut, ce serveur
est accessible depuis le port 8000 et l’adresse IP 127.0.0.1, qui est l’adresse locale de
votre machine. Le serveur redémarre à chaque modification du code dans le projet. Bien
évidemment, ce serveur n’est pas destiné à la production. Le framework ne garantit ni
les performances, ni la sécurité du serveur de développement pour une utilisation en
production.

À chaque démarrage du serveur et modification du code, la commande validate (ex-
pliquée par la suite) est lancée afin de vérifier si les modèles sont corrects.

Il est possible de spécifier un port d’écoute différent de celui par défaut en spécifiant
le numéro de port. Ici, le serveur écoutera sur le port 9000 :

python manage.py runserver 9000

De même, il est possible de spécifier une adresse IP différente de 127.0.0.1 (pour l’ac-
cessibilité depuis le réseau local par exemple). Il n’est pas possible de spécifier une
adresse IP sans spécifier le port :

python manage.py runserver 192.168.1.6:7000

Le serveur de développement prend également en charge l’IPv6. Nous pouvons dès lors
spécifier une adresse IPv6, tout comme nous spécifierions une adresse IPv4, à condition
de la mettre entre crochets :

270

LES COMMANDES DE BASE

python manage.py runserver [2001:0 db8 :1234:5678::9]:7000

–ipv6, -6 Il est également possible de remplacer l’adresse locale IPv4 127.0.0.1 par
l’adresse locale IPv6 : :1 en spécifiant l’option –ipv6 ou -6 :

python manage.py runserver -6

–noreload Empêche le serveur de développement de redémarrer à chaque modification
du code. Il faudra procéder à un redémarrage manuel pour que les changements soient
pris en compte.

–nothreading Le serveur utilise par défaut des threads. En utilisant cette option,
ceux-ci ne seront pas utilisés.

shell

Lance un interpréteur interactif Python. L’interpréteur sera configuré pour le projet et
des modules de ce dernier pourront être importés directement.

version

Indique la version de Django installée :

python manage.py version
1.5

help <commande>

Affiche de l’aide pour l’utilisation de manage.py. Utilisez manage.py help <commande>
pour accéder à la description d’une commande avec ses options.

startproject <nom> [destination]

Cette commande s’utilise obligatoirement avec django-admin.py : vous ne
disposez pas encore de manage.py vu que le projet n’existe pas.

Crée un nouveau projet utilisant le nom donné en paramètre. Un nouveau dossier dans
le répertoire actuel utilisant le nom du projet sera créé et les fichiers de base y seront
insérés (manage.py, le sous-dossier contenant le settings.py notamment, etc.).

Il est possible d’indiquer un répertoire spécifique pour accueillir le nouveau projet :

271

CHAPITRE 24. L’UTILITAIRE MANAGE.PY

django -admin.py startproject crepes_bretonnes /home/crepes/
projets/crepes

Ici, tous les fichiers seront directement insérés dans le dossier /home/crepes/projets/‌
crepes.

–template Cette option permet d’indiquer un modèle de projet à copier, plutôt que
d’utiliser celui par défaut. Il est possible de spécifier un chemin vers le dossier contenant
les fichiers ou une archive (.tar.gz, .tar.bz2, .tgz, .tbz, .zip) contenant également le
modèle. Exemple :

django -admin.py startproject --template =/home/mathx/projets/
modele_projet crepes_bretonnes

Indiquer une URL (http, https ou ftp) vers une archive est également possible :

django -admin.py startproject --template=http :// monsite.com/
modele_projet.zip crepes_bretonnes

Django se chargera de télécharger l’archive, de l’extraire, et de la copier dans le nouveau
projet.

startapp <nom> [destination]

Crée une nouvelle application dans un projet. L’application sera nommée selon le nom
passé en paramètre. Un nouveau dossier sera créé dans le projet avec les fichiers de
base (models.py, views.py, . . .).

Si vous le souhaitez, vous pouvez indiquer un répertoire spécifique pour accueillir l’ap-
plication, sinon l’application sera ajoutée dans le répertoire actuel :

python manage.py startapp blog /home/crepes/projets/crepes/
global/blog

–template Tout comme startproject, cette option permet d’indiquer un modèle d’ap-
plication à copier, plutôt que d’utiliser celui par défaut. Il est possible de spécifier un
chemin vers le dossier contenant les fichiers ou une archive (.tar.gz, .tar.bz2, .tgz, .tbz,
.zip) contenant le modèle. Exemple :

python manage.py startapp --template =/home/mathx/projets/
modele_app crepes_bretonnes/blog

Indiquer une URL (http, https ou ftp) vers une archive est également possible :

python manage.py startapp --template=http :// monsite.com/
modele_app.zip crepes_bretonnes

272

LES COMMANDES DE BASE

Django se chargera de télécharger l’archive, de l’extraire, et de la copier dans la nouvelle
application.

diffsettings

Indique les variables de votre settings.py qui ne correspondent pas à la configuration
par défaut d’un projet neuf. Les variables se terminant par ### sont des variables qui
n’apparaissent pas dans la configuration par défaut.

validate

Vérifie et valide tous les modèles des applications installées. Si un modèle est invalide,
une erreur est affichée.

test <application ou identifiant de test>

Lance les tests unitaires d’un projet, d’une application, d’un test ou d’une méthode en
particulier. Pour lancer tous les tests d’un projet, il ne faut spécifier aucun argument.
Pour une application, il suffit d’indiquer son nom (sans inclure le nom du projet) :

python manage.py test blog

Pour ne lancer qu’un seul test unitaire, il suffit d’ajouter le nom du test après le nom
de l’application :

python manage.py test blog.BlogUnitTest

Finalement, pour ne lancer qu’une seule méthode d’un test unitaire, il faut également
la spécifier après l’identifiant du test :

python manage.py test blog.BlogUnitTest.test_lecture_article

–failfast Arrête le processus de vérification de tous les tests dès qu’un seul test a
échoué et rapporte l’échec en question.

testserver <fixture fixture ...>

Lance un serveur de développement avec les données des fixtures indiquées. Les fixtures
sont des fichiers contenant des données pour remplir une base de données. Pour mieux
comprendre le fonctionnement des fixtures, référez-vous à la commande loaddata.

Cette commande effectue trois actions :

1. Elle crée une base de données vide.

273

CHAPITRE 24. L’UTILITAIRE MANAGE.PY

2. Une fois la base de données créée, elle la remplit avec les données des fixtures
passées en paramètre.

3. Un serveur de développement est lancé avec la base de données venant d’être
remplie.

Cette commande peut se révéler particulièrement utile lorsque vous devez régulièrement
changer de données pour tester la vue que vous venez d’écrire. Au lieu de devoir à
chaque fois créer et supprimer des données manuellement dans votre base pour vérifier
chaque situation possible, il vous suffira de lancer le serveur de développement avec des
fixtures adaptées à chaque situation.

–addrport [port ou adresse:port] Tout comme pour runserver, le serveur de dé-
veloppement sera accessible par défaut depuis 127.0.0.1 :8000. Il est également possible
de spécifier un port d’écoute ou une adresse spécifique :

python manage.py testserver --addrport 7000 fixture.json

python manage.py testserver --addrport 192.168.1.7:9000 fixture.
json

La gestion de la base de données

Toutes les commandes de cette section ont une option commune : –database qui permet
de spécifier l’alias (indiqué dans votre settings.py) de la base de données sur laquelle
la commande doit travailler si vous disposez de plusieurs bases de données. Exemple :

python manage.py syncdb --database=master

syncdb

Crée une table dans la base de données pour chaque modèle issu des applications instal-
lées (depuis INSTALLED_APPS dans settings.py). Cet outil crée une table uniquement
si elle n’existe pas déjà dans la base de données. À noter que si vous avez modifié votre
modèle, syncdb ne mettra pas à jour la structure de la table correspondante. Vous
devrez faire cela manuellement.

Lors de l’installation de l’application django.contrib.auth, syncdb permet de créer
un super-utilisateur directement. De plus, l’outil cherchera des fixtures commençant par
initial_data avec une extension appropriée (typiquement json ou xml, vos fixtures
doivent donc s’appeler initial_data.json par exemple). Pour mieux comprendre le
fonctionnement des fixtures, référez-vous à la commande loaddata.

–noinput Supprime toutes les confirmations adressées à l’utilisateur.

274

LA GESTION DE LA BASE DE DONNÉES

dbshell

Lance le client de gestion de votre base de données en ligne de commande, selon les
paramètres spécifiés dans votre settings.py. Cette commande présume que vous avez
installé le client adapté à votre base de données et que celui-ci est accessible depuis
votre console.

– Pour PostgreSQL, l’utilitaire psql sera lancé ;
– Pour MySQL, l’utilitaire mysql sera lancé ;
– Pour SQLite, l’utilitaire sqlite3 sera lancé.

dumpdata <application application.Modele ...>

Affiche toutes les données d’applications ou de modèles spécifiques contenues dans
votre base de données dans un format texte sérialisé. Par défaut, le format utilisé sera
le JSON. Ces données sont des fixtures qui pourront être utilisées par la suite dans des
commandes comme loaddata, syncdb ou testserver. Exemple :

python manage.py dumpdata blog.Article
[{"pk": 1, "model": "blog.article", "fields ": {"date":

"2012 -07 -11 T15 :51:08.607Z", "titre ": "Les crêpes c’est trop
bon", "categorie ": 1,

"auteur ": "Maxime", "contenu ": "Vous saviez que les crêpes
bretonnes c’est trop bon ? La pêche c’est nul."}},

{"pk": 2, "model": "blog.article", "fields ": {"date":
"2012 -07 -11 T16 :25:53.262Z", "titre ": "Un super titre d’
article !",

"categorie ": 1, "auteur ": "Mathieu", "contenu ": "Un super
contenu ! (ou pas)"}}]

Il est possible de spécifier plusieurs applications et modèles directement :

python manage.py dumpdata blog.Article blog.Categorie auth

Ici, les modèles Article et Categorie de l’application blog et tous les modèles de
l’application django.contrib.auth seront sélectionnés et leurs données affichées. Si
vous ne spécifiez aucune application ou modèle, tous les modèles du projet seront
repris.

–all Force l’affichage de tous les modèles, à utiliser si certains modèles sont filtrés.

–format <fmt> Change le format utilisé. Utilisez –format xml pour utiliser le format
XML par exemple.

–indent <nombre d’espace> Par défaut, comme vu plus tôt, toutes les données sont
affichées sur une seule et même ligne. Cela ne facilite pas la lecture pour un humain,
vous pouvez donc utiliser cette option pour indenter le rendu avec le nombre d’espaces
spécifié pour chaque indentation.

275

CHAPITRE 24. L’UTILITAIRE MANAGE.PY

–exclude Empêche certains modèles ou applications d’être affichés. Par exemple, si
vous souhaitez afficher toutes les données de l’application blog, sauf celles du modèle
blog.Article, vous pouvez procéder ainsi :

python manage.py dumpdata blog --exclude blog.Article

–natural Utilise une représentation différente pour les relations ForeignKey et ManyTo‌
Many pour d’éventuelles situations à problèmes. Si vous affichez contrib.auth.Permission
ou utilisez des ContentType dans vos modèles, vous devriez utiliser cette option.

loaddata <fixture fixture ...>

Enregistre dans la base de données les fixtures passées en argument. Les fixtures sont des
fichiers contenant des données de votre base de données. Ces données sont enregistrées
dans un format texte spécifique, généralement en JSON ou en XML. Django peut dès
lors directement lire ces fichiers et ajouter leur contenu à la base de données. Vous
pouvez créer des fixtures à partir de la commande dumpdata.

La commande loaddata ira chercher les fixtures dans trois endroits différents :

– Dans un dossier fixtures dans chaque application ;
– Dans un dossier indiqué par la variable FIXTURE_DIRS dans votre settings.py ;
– À partir du chemin vers le fichier donné en argument, absolu ou relatif.

Vous pouvez omettre d’indiquer l’extension de la fixture :

manage.py loaddata ma_fixture

Dans ce cas, Django ira chercher dans tous les endroits susmentionnés et prendra
toutes les fixtures ayant une terminaison correspondant à un format de fixtures (.json
pour le JSON ou .xml pour le XML par exemple). Dès lors, si vous avez un fichier
ma_fixture.json dans un dossier fixtures d’une application, celui-ci sera sélectionné.

Bien entendu, vous pouvez également spécifier un fichier avec l’extension :

manage.py loaddata ma_fixture.xml

Dans ce cas, le fichier devra obligatoirement s’appeler ma_fixture.xml pour être sé-
lectionné.

Django peut également gérer des fixtures compressées. Si vous indiquez ma_fixture.json
comme fixture à utiliser, Django cherchera ma_fixture.json, ma_fixture.json.zip,
ma_fixture.json.gz ou ma_fixture.json.bz2. S’il tombe sur une fixture compres-
sée, il la décompressera, puis lancera le processus de copie.

inspectdb

Inspecte la base de données spécifiée dans votre settings.py et crée à partir de sa
structure un models.py. Pour chaque table dans la base de données, un modèle cor-

276

LA GESTION DE LA BASE DE DONNÉES

respondant sera créé. Cette commande construit donc des modèles à partir de tables,
il s’agit de l’opération inverse de la commande syncdb.

Notons qu’il ne s’agit ici que d’un raccourci. Les modèles créés automatiquement
doivent être relus et vérifiés manuellement. Certains champs nommés avec des mots-
clés de Python (comme class ou while par exemple) peuvent avoir été renommés
pour éviter d’éventuelles collisions. Il se peut également que Django n’ait pas réussi à
identifier le type d’un champ et le remplace par un TextField. Il convient également
d’être particulièrement attentif aux relations ForeignKey, ManyToManyField, etc.

Voici un extrait d’un inspectdb, reprenant le modèle Article de notre application
blog créée dans le cours :

1 class BlogArticle(models.Model):
2 id = models.IntegerField(primary_key=True)
3 titre = models.CharField(max_length=100)
4 auteur = models.CharField(max_length=42)
5 contenu = models.TextField ()
6 date = models.DateTimeField ()
7 categorie = models.ForeignKey(BlogCategorie)
8 class Meta:
9 db_table = u'blog_article '

flush

Réinitialise la base de données. Celle-ci retrouvera l’état dans laquelle elle était après
un syncdb : les tables seront recréées, toutes les données seront perdues et les fixtures
initial_data seront réinsérées.

sql <application application ...>

Construit et affiche les requêtes SQL permettant de créer les tables dans la base de
données à partir des modèles d’une ou des applications indiquées. Exemple :

python manage.py sql blog auth

sqlcustom <application application ...>

Affiche des requêtes SQL contenues dans des fichiers. Django affiche les requêtes conte-
nues dans les fichiers <application>/sql/<modele>.sql où <application> est le
nom de l’application donné en paramètre et <modele> un modèle quelconque de l’ap-
plication. Si nous avons l’application blog incluant le modèle Article, la commande
manage.py sqlcustom blog affichera les requêtes du fichier blog/sql/article.sql
s’il existe, et y ajoutera toutes les autres requêtes des autres modèles de l’application.

277

CHAPITRE 24. L’UTILITAIRE MANAGE.PY

À chaque fois que vous réinitialisez votre base de données par exemple, cette commande
vous permet d’exécuter facilement des requêtes SQL spécifiques en les joignant à la
commande dbshell via des pipes sous Linux ou Mac OS X :

python manage.py sqlcustom blog | python manage.py dbshell

sqlall <application application ...>

Combinaison des commandes sql et sqlcustom. Cette commande affichera d’abord les
requêtes pour créer les tables, puis les requêtes personnalisées. Référez-vous à ces deux
commandes pour connaître le fonctionnement exact de cette commande.

sqlclear <application application ...>

Construit et affiche les requêtes SQL permettant de supprimer les tables dans la base
de données à partir des modèles d’une ou des applications indiquées.

sqlflush <application application ...>

Construit et affiche les requêtes SQL permettant de vider les tables dans la base de
données à partir des modèles d’une ou des applications indiquées. Les requêtes SQL
affichées agissent exactement comme la commande flush.

sqlindexes <application application ...>

Construit et affiche les requêtes SQL permettant de créer les index des tables dans la
base de données à partir des modèles d’une ou des applications indiquées.

sqlsequencereset <application application ...>

Construit et affiche les requêtes SQL permettant de réinitialiser les séquences des tables
dans la base de données à partir des modèles d’une ou des applications indiquées. Les
séquences sont des index permettant de déterminer l’index à assigner à la prochaine
entrée créée.

Les commandes d’applications

clearsessions

Supprime les sessions expirées de django.contrib.sessions.

278

LES COMMANDES D’APPLICATIONS

changepassword [pseudo]

Permet de changer le mot de passe d’un utilisateur en spécifiant son pseudo :

python manage.py changepassword Mathieu

Si aucun nom d’utilisateur n’est spécifié, Django prendra le nom d’utilisateur de la
session actuelle. Cette commande n’est disponible que si le système d’utilisateurs
(django.contrib.auth) est installé.

createsuperuser

Permet de créer un super-utilisateur (un utilisateur avec tous les pouvoirs). Cette
commande demandera le pseudo, l’adresse e-mail — si ceux-ci n’ont pas été spécifiés à
partir des options — et le mot de passe.

–username et –email Permettent de spécifier directement le nom et l’adresse e-mail
de l’utilisateur.

Si ces deux options sont indiquées, vous devrez spécifier le mot de passe manuellement
par la suite afin que l’utilisateur puisse se connecter.

makemessages

Parcourt tous les fichiers de l’arborescence à partir du dossier actuel pour déterminer
les chaînes de caractères à traduire et crée ou met à jour les fichiers de traduction.
Référez-vous au chapitre sur l’internationalisation pour plus d’informations.

–all, -a Met à jour les chaînes à traduire pour tous les langages.

–extensions Indique de ne sélectionner que les fichiers qui ont une extension spéci-
fique :

python manage.py makemessages --extension xhtml

. . . ne prendra que les fichiers xHTML.

python manage.py --extension=html ,txt --extension xml

. . .prendra les fichiers HTML, TXT et XML.

–locale Permet de ne mettre à jour qu’une seule langue :

python manage.py makemessages --locale fr_FR

–symlinks Autorise Django à suivre les liens symboliques en explorant les fichiers.

–ignore, -i Permet d’ignorer certains fichiers :

python manage.py makemessages --ignore=blog/* --ignore =*. html

279

Tous les fichiers HTML et du dossier blog seront ignorés.

–no-wrap Empêche Django de répartir les longues chaînes de caractères en plusieurs
lignes dans les fichiers de traduction.

–no-location Empêche Django d’indiquer la source de la chaîne de caractères dans
les fichiers de traduction (nom du fichier et ligne dans celui-ci).

compilemessages

Compile les fichiers de traduction .po vers des fichiers .mo afin que gettext puisse les
utiliser. Référez-vous au chapitre sur l’internationalisation pour plus d’informations.

–locale Permet de ne compiler qu’une seule langue :

python manage.py compilemessages --locale fr_FR

createcachetable <nom de la table>

Crée une table de cache pour le système de cache. Référez-vous au chapitre sur le
système de cache pour comprendre son fonctionnement. La table sera nommée selon le
nom donné en paramètre.

Index

A
administration . 78

gestion des droits 82
super-utilisateur 79

application . 19

B
base de données 18, 26

gestion . 274
bibliothèque standard 249

C
cache . 208
configuration . 18
ContentTypes . 152
CSRF. .100
CSS. .55

D
django-admin.py . 16
django.contrib . 250

E
e-mail de débug . 264
envoi de fichier . 109
erreur 404 . 40, 265
erreur 500. .264
expressions régulières.35

F
fichier statique . 55
flux RSS et Atom . 251
fonction _ . 229
formulaire . 96

classe Meta . 104

FileField . 114
ImageField . 110
ModelForm . 103
type de champ.96
validation . 100
widget . 97

framework . 4

G
gettext .224

I
internationalisation 223

L
localisation . 225
login_required . 195

M
manage.py . 17, 269
Memcached . 209
message utilisateur 203
middleware . 79, 179
mod_wsgi . 262
modèle . 60

filter . 64
héritage . 148
objet Q . 144
type de champ.60

mot de passe . 189
MVC . 10
MVT . 11

N
notification utilisateur.203

283

O
ORM . 26

P
page statique . 251
pagination . 131, 215
permissions utilisateur 200
PIL . 110
projet . 12

R
redirection . 40
regex. .35
render .47
render . 166
request.user . 195
routage d’URL 33, 128
router . 33

S
serveur

Apache . 262
développement 35, 270

settings.py . 18
signal . 176
sitemap XML . 251
slug . 74, 93
SQL . 25

clé étrangère 27, 67
moyenne . 144
MySQL . 25
PostgreSQL . 25
SQLite . 25

syncdb .61

T
template

commentaire. .55
échappement . 173
filtre . 49, 155
formatage de données.255
inclusion. .52
tag . 50, 155
load . 156

variable . 48
template context processor 162
test unitaire. .241

compte utilisateur 247
test des vues . 245

traduction . 223

U
URL . 36
urlpatterns .34
utilisateurs .187

V
vues génériques . 127

Dépôt légal : avril 2013
ISBN : 979-10-90085-48-0

Code éditeur : 979-10-90085
Imprimé en France

Achevé d’imprimer le 23 avril 2013
sur les presses de Corlet Imprimeur (Condé-sur-Noireau)

Numéro imprimeur : 97222

Mentions légales
Conception couverture : Fan Jiyong et Alexandra Persil
Illustrations chapitres : Fan Jiyong et Alexandra Persil

	Avant-propos
	Django, « pour les perfectionnistes sous pression »
	Qu'allez-vous apprendre en lisant ce livre ?
	Comment lire ce livre ?
	Suivez l'ordre des chapitres
	Pratiquez en même temps
	Utilisez les codes web !

	Remerciements
	Maxime Lorant
	Mathieu Xhonneux

	I Présentation de Django
	Créez vos applications web avec Django
	Qu'est-ce qu'un framework ?
	Quels sont les avantages d'un framework ?
	Quels sont les désavantages d'un framework ?

	Qu'est-ce que Django ?
	Pourquoi ce succès ?
	Une communauté à votre service

	Téléchargement et installation
	Linux et Mac OS
	Windows
	Vérification de l'installation

	Le fonctionnement de Django
	Un peu de théorie : l'architecture MVC
	La spécificité de Django : le modèle MVT
	Projets et applications

	Gestion d'un projet
	Créons notre premier projet
	Configurez votre projet
	Créons notre première application

	Les bases de données et Django
	Une base de données, c'est quoi ?
	Le langage SQL et les gestionnaires de base de données
	La magie des ORM
	Le principe des clés étrangères

	II Premiers pas
	Votre première page grâce aux vues
	Hello World !
	La gestion des vues

	Routage d'URL : comment j'accède à ma vue ?
	Organiser proprement vos URL
	Comment procède-t-on ?

	Passer des arguments à vos vues
	Des réponses spéciales
	Simuler une page non trouvée
	Rediriger l'utilisateur

	Les templates
	Lier template et vue
	Affichons nos variables à l'utilisateur
	Affichage d'une variable
	Les filtres

	Manipulons nos données avec les tags
	Les conditions : {% if %}
	Les boucles : {% for %}
	Le tag {% block %}
	Les liens vers les vues : {% url %}
	Les commentaires : {% comment %}

	Ajoutons des fichiers statiques

	Les modèles
	Créer un modèle
	Jouons avec des données
	Les liaisons entre modèles
	Les modèles dans les vues
	Afficher les articles du blog
	Afficher un article précis

	L'administration
	Mise en place de l'administration
	Les modules django.contrib
	Accédons à cette administration !

	Première prise en main
	Administrons nos propres modèles
	Personnalisons l'administration
	Modifier l'aspect des listes
	Modifier le formulaire d'édition
	Retour sur notre problème de slug

	Les formulaires
	Créer un formulaire
	Utiliser un formulaire dans une vue
	Créons nos propres règles de validation
	Des formulaires à partir de modèles

	La gestion des fichiers
	Enregistrer une image
	Afficher une image
	Encore plus loin

	TP : un raccourcisseur d'URL
	Cahier des charges
	Correction

	III Techniques avancées
	Les vues génériques
	Premiers pas avec des pages statiques
	Lister et afficher des données
	Une liste d'objets en quelques lignes avec ListView
	Afficher un article via DetailView

	Agir sur les données
	CreateView
	UpdateView
	DeleteView

	Techniques avancées dans les modèles
	Les requêtes complexes avec Q
	L'agrégation
	L'héritage de modèles
	Les modèles parents abstraits
	Les modèles parents classiques
	Les modèles proxy

	L'application ContentType

	Simplifions nos templates : filtres, tags et contextes
	Préparation du terrain : architecture des filtres et tags
	Personnaliser l'affichage de données avec nos propres filtres
	Un premier exemple de filtre sans argument
	Un filtre avec arguments

	Les contextes de templates
	Un exemple maladroit : afficher la date sur toutes nos pages
	Factorisons encore et toujours

	Des structures plus complexes : les custom tags
	Première étape : la fonction de compilation
	Passage de variable dans notre tag
	Les simple tags
	Quelques points à ne pas négliger

	Les signaux et middlewares
	Notifiez avec les signaux
	Contrôlez tout avec les middlewares

	IV Des outils supplémentaires
	Les utilisateurs
	Commençons par la base
	L'utilisateur
	Les mots de passe
	Étendre le modèle User

	Passons aux vues
	La connexion
	La déconnexion
	En général

	Les vues génériques
	Se connecter
	Se déconnecter
	Se déconnecter puis se connecter
	Changer le mot de passe
	Confirmation du changement de mot de passe
	Demande de réinitialisation du mot de passe
	Confirmation de demande de réinitialisation du mot de passe
	Réinitialiser le mot de passe
	Confirmation de la réinitialisation du mot de passe

	Les permissions et les groupes
	Les permissions
	Les groupes

	Les messages
	Les bases
	Dans les détails

	La mise en cache
	Cachez-vous !
	Dans des fichiers
	Dans la mémoire
	Dans la base de données
	En utilisant Memcached
	Pour le développement

	Quand les données jouent à cache-cache
	Cache par vue
	Dans les templates
	La mise en cache de bas niveau

	La pagination
	Exerçons-nous en console
	Utilisation concrète dans une vue

	L'internationalisation
	Qu'est-ce que le i18n et comment s'en servir ?
	Traduire les chaînes dans nos vues et modèles
	Cas des modèles

	Traduire les chaînes dans nos templates
	Le tag {% trans %}
	Le tag {% blocktrans %}
	Aidez les traducteurs en laissant des notes !

	Sortez vos dictionnaires, place à la traduction !
	Génération des fichiers .po
	Génération des fichiers .mo

	Le changement de langue

	Les tests unitaires
	Nos premiers tests
	Testons des vues

	Ouverture vers de nouveaux horizons : django.contrib
	Vers l'infini et au-delà
	Dynamisons nos pages statiques avec flatpages !
	Installation du module
	Gestion et affichage des pages
	Lister les pages statiques disponibles

	Rendons nos données plus lisibles avec humanize
	apnumber
	intcomma
	intword
	naturalday
	naturaltime
	ordinal

	V Annexes
	Déployer votre application en production
	Le déploiement
	Gardez un œil sur le projet
	Activer l'envoi d'e-mails
	Quelques options utiles…

	Hébergeurs supportant Django

	L'utilitaire manage.py
	Les commandes de base
	Prérequis
	Liste des commandes

	La gestion de la base de données
	Les commandes d'applications

